Implementation of FEM on HPC –I (Guided examples)

Dr. Damijan Zorko, University of Ljubljana, Faculty of Mechanical Engineering, LECAD

June/2021

Univerza v Ljubljani

IT4INNOVATIONS
NATIONAL SUPERCOMPUTING
CENTER

Overview of Ansys Workbench

- Analysis types
- Project schematic
- Ansys Mechanical

Dr. Damijan Zorko, University of Ljubljana, Faculty of Mechanical Engineering, LECAD

Overview of element types

- Beams
- Shells
- Solids

Example I (Cantilever beam)

- a = 10 mm
- L = 1000 mm
- F = 20kN
- E = 200 Gpa
- N = 0.3
- $\sigma = ?, \Delta L = ?$

Exact analytical solution
$$\sigma = \frac{F}{A} = 200 \text{ MPa}$$
 $\Delta L = \frac{\sigma \cdot L}{\varepsilon} = 1 \text{ mm}$

Example II (Pure bending)

- a = 100 mm
- L = 1000 mm
- F = 25kNm
- E = 200 Gpa
- N = 0.3
- $\sigma = ?$, y (L/2) = ?

Exact analytical solution:

$$\sigma_X = \frac{M}{W} = 150 \text{ MPa}$$

$$\sigma_X = \frac{M}{W} = 150 \text{ MPa}$$

$$y\left(\frac{L}{2}\right) = \frac{1}{8} \frac{M_0 \cdot L^2}{EI} = 1,875 \text{ mm}$$

Dr. Damijan Zorko, University of Ljubljana, Faculty of Mechanical Engineering, LECAD

Example III (Individual exercise)

- D = 50 mm
- d = 46 mm
- L = 2000 mm
- F = 250 N
- E = 200 Gpa
- N = 0.3
- $\sigma = ?, y(L) = ?$

Thank you for your attention!

http://sctrain.eu/

Univerza v Ljubljani

IT4INNOVATIONS
NATIONAL SUPERCOMPUTING
CENTER

