Implementation of FEM on HPC -I (Guided examples)

Dr. Damijan Zorko, University of Ljubljana, Faculty of Mechanical Engineering, LECAD

```
VSB TECHNICAL IT4INNOVATIONS
|||| UNIVERSITY NATIONAL SUPERCOMPUTING
    CENTER
```

Implementation of FEM on HPC -I (Guided examples)

Overview of Ansys Workbench

- Analysis types
- Project schematic
- Ansys Mechanical

Implementation of FEM on HPC -I (Guided examples)
Dr. Damijan Zorko, University of Ljubljana, Faculty of Mechanical Engineering, LECAD

Overview of element types

- Beams
- Shells
- Solids

Example I (Cantilever beam)

- $\mathrm{a}=10 \mathrm{~mm}$
- $\mathrm{L}=1000 \mathrm{~mm}$
- $\mathrm{F}=20 \mathrm{kN}$
- E = 200 Gpa
- $\mathrm{N}=0.3$
- $\sigma=$?, $\Delta \mathrm{L}=$?

Exact analytical solution $\sigma=\frac{F}{A}=200 \mathrm{MPa} \quad \Delta L=\frac{\sigma \cdot L}{\varepsilon}=1 \mathrm{~mm}$

Example II (Pure bending)

- $\mathrm{a}=100 \mathrm{~mm}$
- $\mathrm{L}=1000 \mathrm{~mm}$
- $\mathrm{F}=25 \mathrm{kNm}$
- E = 200 Gpa
- $\mathrm{N}=0.3$

- $\sigma=$?, $y(L / 2)=$?

Exact analytical solution:

$$
\sigma_{X}=\frac{M}{W}=150 \mathrm{MPa}
$$

$$
y\left(\frac{L}{2}\right)=\frac{1}{8} \frac{M_{0} \cdot L^{2}}{E I}=1,875 \mathrm{~mm}
$$

Example III (Individual exercise)

- $\mathrm{D}=50 \mathrm{~mm}$
- $\mathrm{d}=46 \mathrm{~mm}$
- $\mathrm{L}=2000 \mathrm{~mm}$
- F = 250 N
- E = 200 Gpa
- $\mathrm{N}=0.3$

- $\sigma=$?, $\mathrm{y}(\mathrm{L})=$?

Thank you for your attention!

http://sctrain.eu/

