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Methods for solution of BVP
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Methods for solution of Boundary Value Problem (BVP):

• Finite Difference Method (FDM)

• Finite Element Method (FEM)

• Boundary Element Method (BEM)

• Finite Volume Method (FVM)

𝑘 ∆𝑇 𝑥, 𝑦 + 𝑞𝑣 = 0



• IDEA: approximation of derivatives in 
governing equation and boundary 
conditions at points (grid)

• Approximation is derived based on the 
Taylor’s series expansion

• ADVANTAGE: simple to use

• DISADVANTAGE: irregular domains, mesh 
preparation
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Finite Difference Method

𝐸𝐴 𝑢′′(𝑥) = −𝑛0

u(0)=0

𝐸𝐴 𝑢(𝐿)′ = 𝐹0



• Approximation based on the Taylor’s series 
expansion
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Finite Difference Method
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• Writing boundary conditions in discrete 
form:

• Writing governing equation at discrete 
points 1 to 4
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Finite Difference Method

𝐸𝐴 𝑢′′(𝑥) = −𝑛0 ⇒ 𝑢0 − 2𝑢1 + 𝑢2 = −𝑛0ℎ2/(𝐸𝐴)
𝑢1 − 2𝑢2 + 𝑢3 = −𝑛0 ℎ2/(𝐸𝐴)
𝑢2 − 2𝑢3 + 𝑢4 = −𝑛0 ℎ2/(𝐸𝐴)
𝑢3 − 2𝑢4 + 𝑢𝐴 = −𝑛0 ℎ2/(𝐸𝐴)

u(0)=0    ⇒ 𝑢0 = 0  𝐸𝐴 𝑢(𝐿)′ = 𝐹0 ⇒ 𝑢𝐴 − 𝑢3/(2h) =𝐹0



• System of equations:
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Finite Difference Method

BC pt. 0

BC pt. 4

GE pt. 1

GE pt. 2

GE pt. 3

GE pt. 4



• Stationary heat transfer in 2D
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Finite Difference Method

𝑘 ∆𝑇 𝑥, 𝑦 + 𝑞𝑣 = 0
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Finite Element Method

• IDEA: integral based approach

• Starting point of derivation is Weak Integral Form of governing equation

• Solution domain is discretized into sub-domains, called finite elements (FEs)

• In the FE sub-domain we approximate unknown quantities

• ADVANTAGE: simple to use for complex geometrical domains, useful for all 
types of physical problems

• DISADVANTAGE: computationally intensive method
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FEM – Implementation steps

• Derivation of Weak Integral Form of Governing Equation

• Approximation of Solution Variable over Finite Element Domain

• Derivation of Finite Element Matrix Equation

• Meshing & Writing FE Matrix Equation for each FE

• The Assembly Process (Global Finite Element Matrix Equation)

• Writing Boundary Conditions

• Solution of System of Equations



10

FEM – Implementation steps

• Derivation of Weak Integral Form of Governing Equation

• Approximation of Solution Variable over Finite Element Domain

• Derivation of Finite Element Matrix Equation

• Meshing & Writing FE Matrix Equation for each FE

• The Assembly Process (Global Finite Element Matrix Equation)

• Writing Boundary Conditions

• Solution of System of Equations
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FEM – Weak Form

Derivation of Weak Integral Form of Governing Equation

𝐸𝐴 𝑢′′(𝑥) = −𝑛0

𝐸𝐴 𝑢′′ 𝑥 + 𝑛0 = 0

න
0

𝐿𝑒

𝐸𝐴 𝑢′′ 𝑥 + 𝑛0 𝑣 𝑥 d𝑥 = 0 Strong Form

Governing Equation
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FEM – Weak Form

Derivation of Weak Integral Form of Governing Equation

න
0

𝐿𝑒

𝐸𝐴 𝑢′′ 𝑥 𝑣 𝑥 d𝑥 = − න
0

𝐿𝑒

𝑛0𝑣 𝑥 d𝑥 Strong Form

Integration by PARTS

න
0

𝐿𝑒

𝐸𝐴 𝑢′ 𝑥 𝑣′ 𝑥 d𝑥 = 𝐸𝐴𝑢′ 𝐿 𝑣 𝐿 − 𝐸𝐴𝑢′ 0 𝑣 0 + න
0

𝐿𝑒

𝑛0𝑣 𝑥 d𝑥

WEAK Form 𝑁 𝐿 𝑁 0



13

FEM – Implementation steps

• Derivation of Weak Integral Form of Governing Equation

• Approximation of Solution Variable over Finite Element Domain

• Derivation of Finite Element Matrix Equation

• Meshing & Writing FE Matrix Equation for each FE

• The Assembly Process (Global Finite Element Matrix Equation)

• Writing Boundary Conditions

• Solution of System of Equations
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FEM – Approximation

Approximation of u(x)

න
0
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0
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FEM – Matrix Equation

Inserting         into weak form
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FEM – Implementation steps

• Derivation of Weak Integral Form of Governing Equation

• Approximation of Solution Variable over Finite Element Domain

• Derivation of Finite Element Matrix Equation

• Meshing & Writing FE Matrix Equation for each FE

• The Assembly Process (Global Finite Element Matrix Equation)

• Writing Boundary Conditions

• Solution of System of Equations
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FEM – Matrix Equation

Choice of v(x) – Galerkin approach
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FEM – Matrix Equation

Choice of v(x) – Galerkin approach
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FEM – Matrix Equation

FE Matrix Equation
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FEM – Implementation steps

• Derivation of Weak Integral Form of Governing Equation

• Approximation of Solution Variable over Finite Element Domain

• Derivation of Finite Element Matrix Equation

• Meshing & Writing FE Matrix Equation for each FE

• The Assembly Process (Global Finite Element Matrix Equation)

• Writing Boundary Conditions

• Solution of System of Equations
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FEM – Meshing

Meshing & Writing FE Matrix Equation for each FE
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FEM – The Assembly Process
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FEM – The Assembly Process
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FEM – The Assembly Process
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FEM – Boundary conditions
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FEM – System of Equations
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FEM – System of Equations
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• Stationary heat transfer in 2D
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Finite Element Method

𝑘 ∆𝑇 𝑥, 𝑦 + 𝑞𝑣 = 0
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Boundary Element Method

• IDEA: integral based approach
• Starting point of derivation is Inverse Integral Form of governing equation
• Solution boundary is discretized into sub-domains, called boundary 

elements (BEs)
• In the BE sub-domain (only boundary!) we approximate unknown 

quantities

• ADVANTAGE: solution of governing field equations is converted into 
searching unknown quantities on boundary

• Suitable for solution of potential problems & infinite problems 
• DISADVANTAGE: full and non-symmetrical matrices
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Boundary Element Method

• Basic differences between BVP solution methods
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Finite Volume Method

• IDEA: integral based approach

• Starting point of derivation is Integral Form of governing equation, where the integral 
over solution domain is converted in surface integral around the domain 

• Solution domain is discretized into sub-domains, called finite volumes (cells or control 
volumes)

• The unknown solution variable is constant over the cell (calculated at the centre)

• ADVANTAGE: solution of governing field equations is converted into searching 
unknown quantity in the cell centre.

• Continuity requirements are simply fulfilled.

• Similar to FDM, Suitable for solution of heat transfer & fluid flow problems 

• DISADVANTAGE: fulfilment of boundary conditions related to solution variable
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Finite Volume Method

• Presentation on the stationary heat transfer problem

V 0
T T T

k k k q
x x y y z z

         
       

         

  V( )div k grad T q 

  V( )div k grad T d q d
 

     Integration over the domain
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Finite Volume Method

• Green-Gauss theorem

  ˆ( ) ( )div k grad T d k grad T n d
 

   

V
ˆ( )k grad T n d q d

 

    

Heat balance over control volume

  V( )div k grad T d q d
 

    
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Finite Volume Method

• Reduction to 1D

V
ˆ( )k grad T n d q d

 

    

( )T T x

L

V

0

k n x

dT
d q Adx

dx


   

+
v

p+1 p p p 1

v vm m

k A k A
k n (T T ) (T T )x

dT
d

dx X X 





      
         

          


Since the temperature is unknown, we use approximation
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Finite Volume Method

• Reduction to 1D

V
ˆ( )k grad T n d q d

 

    

( )T T x

L

V

0

k n x

dT
d q Adx

dx


   

Right-hand side of the equation, we approximate as

 
vL

V V p vp

0

A Lq Adx q 

 
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• System of equations
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