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Methods for solution of BVP S train

Methods for solution of Boundary Value Problem (BVP):

* Finite Difference Method (FDM)

* Finite Element Method (FEM)

* Boundary Element Method (BEM)
* Finite Volume Method (FVM)

k AT(x,y)+q, =0




SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Finite Difference Method SCtram

* IDEA: approximation of derivatives in -
governing equation and boundary WL
conditions at points (grid) 4

* Approximation is derived based on the
Taylor’s series expansion

EAu"(x) = —n,

 ADVANTAGE: simple to use

* DISADVANTAGE: irregular domains, mesh u(0)=0
preparation EAu(L) = F,
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* Approximation based on the Taylor’s series

expansion
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* Writing boundary conditions in discrete T 0 4¢ —
form: "= L l T
X
u(0)=0 =u,=0] [EAu(l) =Fy> u,—uy/(2h) =F, "1
* Writing governing equation at discrete ) t r
points 1to 4 I 0
EFAu"(x) = —nyg = uy— 2u; +u, = —ngh?/(EA) : |
U; — 2U, + uz3 = —ny h?/(EA)
U, — 2uz + uy, = —ny h*/(EA) 4 .
Uz — 2uUy + uy = —ngy h*/(EA) h[ ot
A O
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Finite Difference Method SCtram

e System of equations: T 0 4% —=
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Finite Difference Method SCtram

 Stationary heat transfer in 2D

T, =20°C

1. =50°C
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Finite Element Method SCtram

* IDEA: integral based approach
e Starting point of derivation is Weak Integral Form of governing equation
 Solution domain is discretized into sub-domains, called finite elements (FEs)

* In the FE sub-domain we approximate unknown quantities

 ADVANTAGE: simple to use for complex geometrical domains, useful for all
types of physical problems

* DISADVANTAGE: computationally intensive method
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* Derivation of Weak Integral Form of Governing Equation

* Approximation of Solution Variable over Finite Element Domain

* Derivation of Finite Element Matrix Equation
* Meshing & Writing FE Matrix Equation for each FE

* The Assembly Process (Global Finite Element Matrix Equation)

* Writing Boundary Conditions
* Solution of System of Equations

Governing
Diff. Eq.

Jg -+ =0

[K]. (u} = (F}

[K.QlOb]' {uglob} = {Fglob}
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Derivation of Weak Integral Form of Governing Equation

EAu" (x) = —n,

R

Governing Equation

EAu"(x) +nyg=0

>

Le

0

(EAu"" (x) + ny)v(x)dx =0

Strong Form

L>>A4
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FEM — Weak Form SCtram

Derivation of Weak Integral Form of Governing Equation @F_
u(x) AE:
Lo Le al
j EAu" (x)v(x)dx = —J nov(x)dx | Strong Form ea
0 0 |
Integration by PARTS J_L- l F

Le Le
] EAu' (x)v'(x)dx = EAu'(L) v(L) — EAu'(0)v(0) + f nov(x)dx
0 < L < L 0

v v

WEAK Form N(L) N(0)
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Le

Le
j EAu' (x)v'(x)dx = N, v(L) — N; v(0) + f nov(x)dx

0 0

Approximation of u(x) u, 10,

N, [ KE — N,
] r—ee
U(X) = 0(X) = U 7, (X) + U, 7, (X) ~— >
X
Le

. X

00 =, = y,(0)=1 A p3(L) =0 = () =1-=

5 X

U(L)=t, = y,(0)=0 A pi(L) =1 =/p,(X) ==

Shape functions
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Le
j EAu' (x)v'(x)dx = N, v(L) — N;v(0) + J
0 0

Le

nov(x)dx

Inserting U(X) into weak form @

-1 1
u'(x) =0'(x) =u, —+ 2

e

u, u,
N, — KE — N,
hM
1 2

>
X
Le—

EAju(x)v(x)dx EA T{

}v(x) dx=N,v(L) - N v(0)+J.n v(x) dx
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* Derivation of Weak Integral Form of Governing Equation

* Approximation of Solution Variable over Finite Element Domain

* Derivation of Finite Element Matrix Equation
* Meshing & Writing FE Matrix Equation for each FE

* The Assembly Process (Global Finite Element Matrix Equation)

* Writing Boundary Conditions
* Solution of System of Equations

Governing
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EA}E u'(x) v'(x) dx = EALIe { (

U, _L—1+u2 I_Hv'(x) dx=N,v(L) — va(0)+‘£n0 v(X) dx

1

€ €

Choice of v(x) — Galerkin approach

@ V=1 =1-F, V)=

€

L

e

L

EA|

0

-1

IS

e

Le
de:- N, + [ 1y, (x) dx
0

u, u,
N, KE — N,
1 2

—>
X
Le

EA(

Le
N ul_u2):_ N1+_[n0 y; (x) dx
0

e
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EA]‘e u'(x) v'(x) dx = EA}e { [

ul_—1+u2 =
L L

1

€ €

ﬂv'(x) dx=N,v(L) — va(O)JrLfn0 v(X) dx

Choice of v(x) — Galerkin approach

@ V0=r0=1 V=

€

€

1

Le
jdx: N, + [ 7, (x) dx
0

u, u,
N, [ KE — N,
1 2

—>
X
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e
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0
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FEM — Matrix Equation SCtrain

FE Matrix Equation
Finite Element Matrix Equation

@ %(Ul_UZ):_Nl_'_JgnO w, (x) dx % 1 -1y _ - N, +n0Le 1
o 0 $ Le _1 1 u2 - N2 2 1

EA 7
@ T(UZ_ul): N2+jn0 v, (X)dX
0

e

Matrix Notation

u, u,
N — KE — N
—
X
Le-
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* Derivation of Weak Integral Form of Governing Equation

* Approximation of Solution Variable over Finite Element Domain

* Derivation of Finite Element Matrix Equation
* Meshing & Writing FE Matrix Equation for each FE

* The Assembly Process (Global Finite Element Matrix Equation)

* Writing Boundary Conditions
* Solution of System of Equations

Governing
Diff. Eq.

Jg -+ =0

[K]. (u} = (F}

[Kglob]- {uglob} = {Fglob}
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FEM — Meshing SCtrain

Meshing & Writing FE Matrix Equation for each FE
EA[ 1 —1]fu] [-NP| nh[L
h|-1 1|u) | N[ 211
EA[ 1 -1|[u,| [-N2] njh|2
h|-1 1 lu] [N 2|1
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FEM — The Assembly Process S train

Expansion to all degrees of freedom

EA‘1 -1 0(u,] [-N®] hfl“
- -1 1 O0Ku,p=< N >—%41> o
0 0 O0flu] | 0

0 0 O01](u] [ 0)
—10 1 -1Hu,b={—N@i_0 1!
0 -1 1
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FEM — The Assembly Process S train

Adding equations together

N

EA'l 1] 01y, [ —NO h"l“
| 513;'1'——11<u2 L IND— N?>—%41+1>
0 =1 1i||ug N? 1
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FEM — The Assembly Process S train

Adding equations together

N

EA'l =1 0fu] [ -N® |. h"l“
0
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Applying boundary conditions
T =1 07[ut [ —N® (1

» FO
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FEM — System of Equations SCtrain

System of equations

EA_l -1 07(0) [-N9] hrl\
T -1 2 -1§u,;=9 K >—%<2$
_O -1 1_ ku3J 0 J “1

Matrix Notation

glob ,glob _ gglob , £glob
K -u =f +an
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System of equations
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 Stationary heat transfer in 2D

T, =20°C

1. =50°C
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Boundary Element Method  SCtrain

* IDEA: integral based approach
* Starting point of derivation is Inverse Integral Form of governing equation

 Solution boundary is discretized into sub-domains, called boundary
elements (BEs)

* In the BE sub-domain (only boundary!) we approximate unknown
guantities

 ADVANTAGE: solution of governing field equations is converted into
searching unknown quantities on boundary

* Suitable for solution of potential problems & infinite problems
* DISADVANTAGE: full and non-symmetrical matrices
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Boundary Element Method  SCtrain

e Basic differences between BVP solution methods

X X X X
b ¥* X X @ ® @ @ © @

X X
» ® 4 X o o o ) (]
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¥ x  $ X o o o Q Q

X X
» X X X @ o o ) (]

X X
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X X X X
finite differences finite elements boundary elements finite volumes
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Finite Volume Method SCtraiﬂ

* |IDEA: integral based approach

. Startin% point of derivation is Integral Form of governing equation, where the integral
over solution domain is converted in surface integral around the domain

. So,ution domain is discretized into sub-domains, called finite volumes (cells or control
volumes)

 The unknown solution variable is constant over the cell (calculated at the centre)

 ADVANTAGE: solution of governing field equations is converted into searching
unknown quantity in the cell centre.

e Continuity requirements are simply fulfilled.
* Similar to FDM, Suitable for solution of heat transfer & fluid flow problems
* DISADVANTAGE: fulfilment of boundary conditions related to solution variable

31



SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP
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* Presentation on the stationary heat transfer problem

g(kﬁj—l_g kg +g(kgj+quo
OXx\ OXx) oy\ oy ) oz\ oz

div[k grad(T)]| =-q,

< L
J-div[k grad (T)] dQ =—qu dQ| Integration over the domain
Q Q
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e Green-Gauss theorem

jdiv[k grad(T)] d =jk grad(T) A dT

.

o

[ div[k grad(T)] dQ =-[q, dO

D
—

jkgrad(r) A dT :—qu do
I Q

j div[k grad(T)] dQ = j k grad(T) A dT

2

Heat balance over control volume

33




SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Finite Volume Method SCtraiﬂ

* Reductionto 1D T =T(Xx)

[kgrad(T) Adr =—a, 4@ ) [T, dr__quAdx
I Q

L dx

Since the temperature is unknown, we use approximation

k A k A o A AX, ,

k— T-T . | " '
j |:[AXV] ( p+l )} {LAXVJ _( p pl):| L p-1 : P ! pt |
m e O —— ——
: @D | ©® :
L 1 :L LV ‘ Lv+1 =|
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Finite Volume Method SCtraiﬂ

* Reductionto 1D T =T(Xx)

[kgrad() A dr =-Ja, d2 ) (S, ar -fq, Acx
) Q 0

dx

r

Right-hand side of the equation, we approximate as

LV
—_[ oy Adx ~—(a,) AL,
0

AX N AX
| m T m’
Finite volume equation Lopo1 p ! p+l .
W—I
kA kA L @ ©® ! |
K x j (Tpﬂ—Tp)}ﬂ > j (Tp—Tpl)}:—(qv)p S S Y A P A T |
V /m?* V. /m™ — X
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» System of equations
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1 O
-2 1
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(—2k/hT,,
0
L o qout

3
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Heat transfer problem

T wall
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e X | X | x |=»
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Thank you for your attention!

http://sctrain.eu/
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