Implementation of FEM on HPC - I

Miroslav Halilovič, Bojan Starman, Janez Urevc, Nikolaj Mole
Faculty of Mechanical Engineering, University of Ljubljana June/2021

vSB TECHNICAL	IT4INNOVATIONS $\left.\right\|_{\mid} \|$UNIVERSITY OF OSTRAVA NATIONAL SUPERCOMPUTING CENTER

Methods for solution of BVP

Methods for solution of Boundary Value Problem (BVP):

- Finite Difference Method (FDM)
- Finite Element Method (FEM)
- Boundary Element Method (BEM)
- Finite Volume Method (FVM)

Finite Difference Method

- IDEA: approximation of derivatives in governing equation and boundary conditions at points (grid)
- Approximation is derived based on the Taylor's series expansion

$$
E A u^{\prime \prime}(x)=-n_{0}
$$

- ADVANTAGE: simple to use
- DISADVANTAGE: irregular domains, mesh preparation
$u(0)=0$
$E A u(L)^{\prime}=F_{0}$

Finite Difference Method

- Approximation based on the Taylor's series expansion

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+\frac{h}{1!} \frac{d^{1} f\left(x_{0}\right)}{d x^{1}}+\frac{h^{2}}{2!} \frac{d^{2} f\left(x_{0}\right)}{d x^{2}}+\frac{h^{3}}{3!} \frac{d^{3} f\left(x_{0}\right)}{d x^{3}}+\ldots
$$

$$
\begin{array}{ll}
f_{+1} \approx f_{0}+h f_{0}^{\prime}+\frac{h^{2}}{2} f_{0}^{\prime \prime} \\
f_{-1} \approx f_{0}-h f_{0}^{\prime}+\frac{h^{2}}{2} f_{0}^{\prime \prime} & f_{0}^{\prime} \approx \frac{f_{+1}-f_{-1}}{2 h} \\
f_{0}^{\prime \prime} \approx \frac{f_{+1}-2 f_{0}+f_{-1}}{h^{2}}
\end{array}
$$

Finite difference approximation of $1^{\text {st }}$ and $2^{\text {nd }}$ derivative

Finite Difference Method

- Writing boundary conditions in discrete form:

$$
u(0)=0 \quad \Rightarrow u_{0}=0 \quad E A u(L)^{\prime}=F_{0} \Rightarrow \quad u_{A}-u_{3} /(2 \mathrm{~h})=F_{0}
$$

- Writing governing equation at discrete points 1 to 4

$$
\begin{aligned}
E A u^{\prime \prime}(x)=-n_{0} \Rightarrow & u_{0}-2 u_{1}+u_{2}=-n_{0} h^{2} /(E A) \\
& u_{1}-2 u_{2}+u_{3}=-n_{0} h^{2} /(E A) \\
& u_{2}-2 u_{3}+u_{4}=-n_{0} h^{2} /(E A) \\
& u_{3}-2 u_{4}+u_{A}=-n_{0} h^{2} /(E A)
\end{aligned}
$$

Finite Difference Method

- System of equations:

Finite Difference Method

- Stationary heat transfer in 2D

Finite Element Method

-IDEA: integral based approach

- Starting point of derivation is Weak Integral Form of governing equation
- Solution domain is discretized into sub-domains, called finite elements (FEs)
- In the FE sub-domain we approximate unknown quantities
- ADVANTAGE: simple to use for complex geometrical domains, useful for all types of physical problems
- DISADVANTAGE: computationally intensive method

FEM - Implementation steps SCtrain wameme

- Derivation of Weak Integral Form of Governing Equation
- Approximation of Solution Variable over Finite Element Domain
- Derivation of Finite Element Matrix Equation
- Meshing \& Writing FE Matrix Equation for each FE
- The Assembly Process (Global Finite Element Matrix Equation)

Governing Diff. Eq.

- Writing Boundary Conditions
- Solution of System of Equations

$$
\begin{gathered}
\int_{\Omega} \ldots+\int_{\Gamma} \ldots=0 \\
\downarrow \\
{[K]^{k} \cdot\{u\}^{k}=\{F\}^{k}} \\
\downarrow \\
{\left[K_{\text {glob }}\right] \cdot\left\{u_{\text {glob }}\right\}=\left\{F_{\text {glob }}\right\}}
\end{gathered}
$$

FEM - Implementation steps SCtrain

- Derivation of Weak Integral Form of Governing Equation
- Approximation of Solution Variable over Finite Element Domain
- Derivation of Finite Element Matrix Equation
- Meshing \& Writing FE Matrix Equation for each FE
- The Assembly Process (Global Finite Element Matrix Equation)

Governing Diff. Eq.

- Writing Boundary Conditions
- Solution of System of Equations

FEM - Weak Form

Derivation of Weak Integral Form of Governing Equation
$E A u^{\prime \prime}(x)=-n_{0} \quad$ Governing Equation
\square
$E A u^{\prime \prime}(x)+n_{0}=0$
$\int_{0}^{L_{e}}\left(E A u^{\prime \prime}(x)+n_{0}\right) v(x) \mathrm{d} x=0 \quad$ Strong Form

FEM - Weak Form

Derivation of Weak Integral Form of Governing Equation

$$
\int_{0}^{L_{e}} E A u^{\prime \prime}(x) v(x) \mathrm{d} x=-\int_{0}^{L_{e}} n_{0} v(x) \mathrm{d} x
$$

Integration by PARTS

$$
\begin{aligned}
& \int_{0}^{L_{e}} E A u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=E A u^{\prime}(L) v(L)-E A u^{\prime}(0) v(0)+\int_{0}^{L_{e}} n_{0} v(x) \mathrm{d} x \\
& \text { WEAK Form }
\end{aligned}
$$

FEM - Implementation steps SCtrain

- Derivation of Weak Integral Form of Governing Equation
- Approximation of Solution Variable over Finite Element Domain
- Derivation of Finite Element Matrix Equation
- Meshing \& Writing FE Matrix Equation for each FE
- The Assembly Process (Global Finite Element Matrix Equation)
- Solution of System of Equations

$$
\begin{gathered}
\int_{\Omega} \ldots+\int_{\Gamma} \ldots=0 \\
\downarrow \\
{[K]^{k} \cdot\{u\}^{k}=\{F\}^{k}} \\
\downarrow \\
{\left[K_{\text {glob }}\right] \cdot\left\{u_{\text {glob }}\right\}=\left\{F_{\text {glob }}\right\}} \\
\hline
\end{gathered}
$$

FEM - Approximation

$\int_{0}^{L_{e}} E A u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=N_{2} v(L)-N_{1} v(0)+\int_{0}^{L_{e}} n_{0} v(x) \mathrm{d} x$
Approximation of $u(x)$

$$
u(x) \approx \hat{u}(x)=u_{1} \psi_{1}(x)+u_{2} \psi_{2}(x)
$$

$$
\begin{aligned}
& \hat{u}(0)=u_{1} \Rightarrow \psi_{1}(0)=1 \wedge \psi_{1}\left(L_{\mathrm{e}}\right)=0 \Rightarrow \psi_{1}(x)=1-\frac{x}{L_{\mathrm{e}}} \\
& \hat{u}\left(L_{\mathrm{e}}\right)=u_{2} \Rightarrow \psi_{2}(0)=0 \wedge \psi_{1}\left(L_{\mathrm{e}}\right)=1 \Rightarrow \psi_{2}(x)=\frac{x}{L_{\mathrm{e}}}
\end{aligned}
$$

Shape functions

FEM - Matrix Equation

$\int_{0}^{L_{e}} E A u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=N_{2} v(L)-N_{1} v(0)+\int_{0}^{L_{e}} n_{0} v(x) \mathrm{d} x$ Inserting $\hat{u}(x)$ into weak form

$$
u^{\prime}(x) \approx \hat{u}^{\prime}(x)=u_{1} \frac{-1}{L_{\mathrm{e}}}+u_{2} \frac{1}{L_{\mathrm{e}}}
$$

$$
E A \int_{0}^{L_{\mathrm{e}}} u^{\prime}(x) v^{\prime}(x) d x=E A \int_{0}^{L_{\mathrm{e}}}\left[\left(u_{1} \frac{-1}{L_{\mathrm{e}}}+u_{2} \frac{1}{L_{\mathrm{e}}}\right)\right] v^{\prime}(x) d x=N_{2} v(L)-N_{1} v(0)+\int_{0}^{L_{8}} n_{0} v(x) d x
$$

FEM - Implementation steps SCtrain

- Derivation of Weak Integral Form of Governing Equation
- Approximation of Solution Variable over Finite Element Domain
- Derivation of Finite Element Matrix Equation
- Meshing \& Writing FE Matrix Equation for each FE
- The Assembly Process (Global Finite Element Matrix Equation)

Governing Diff. Eq.

- Writing Boundary Conditions
- Solution of System of Equations

$$
\begin{gathered}
\int_{\Omega} \ldots+\int_{\Gamma} \ldots=0 \\
\downarrow \\
{[K]^{k} \cdot\{u\}^{k}=\{F\}^{k}} \\
\downarrow \\
{\left[K_{\text {glob }}\right] \cdot\left\{u_{\text {glob }}\right\}=\left\{F_{\text {glob }}\right\}}
\end{gathered}
$$

FEM - Matrix Equation

$E A \int_{0}^{L_{\mathrm{e}}} u^{\prime}(x) v^{\prime}(x) d x=E A \int_{0}^{L_{\mathrm{e}}}\left[\left(u_{1} \frac{-1}{L_{\mathrm{e}}}+u_{2} \frac{1}{L_{\mathrm{e}}}\right)\right] v^{\prime}(x) d x=N_{2} v(L)-N_{1} v(0)+\int_{0}^{L_{\mathrm{e}}} n_{0} v(x) d x$
Choice of $\mathrm{v}(\mathrm{x})$ - Galerkin approach

$$
\begin{aligned}
& \text { (1) } v(x)=\psi_{1}(x)=1-\frac{x}{L_{\mathrm{e}}}, \quad v^{\prime}(x)=-\frac{1}{L_{\mathrm{e}}} \\
& E A \int_{0}^{L_{\mathrm{e}}}\left[\left(u_{1} \frac{-1}{L_{\mathrm{e}}}+u_{2} \frac{1}{L_{\mathrm{e}}}\right)\right]\left(\frac{-1}{L_{\mathrm{e}}}\right) d x=-N_{1}+\int_{0}^{L_{\mathrm{e}}} n_{0} \psi_{1}(x) d x \quad \Delta \frac{E A}{L_{\mathrm{e}}}\left(u_{1}-u_{2}\right)=-N_{1}+\int_{0}^{L_{\mathrm{e}}} n_{0} \psi_{1}(x) d x
\end{aligned}
$$

FEM - Matrix Equation

$E A \int_{0}^{L_{\mathrm{e}}} u^{\prime}(x) v^{\prime}(x) d x=E A \int_{0}^{L_{\mathrm{e}}}\left[\left(u_{1} \frac{-1}{L_{\mathrm{e}}}+u_{2} \frac{1}{L_{\mathrm{e}}}\right)\right] v^{\prime}(x) d x=N_{2} v(L)-N_{1} v(0)+\int_{0}^{L_{\mathrm{e}}} n_{0} v(x) d x$
Choice of $\mathrm{v}(\mathrm{x})$ - Galerkin approach
(2) $\quad v(x)=\psi_{2}(x)=\frac{x}{L_{\mathrm{e}}}, \quad v^{\prime}(x)=\frac{1}{L_{\mathrm{e}}}$

$$
E A \int_{0}^{L_{0}}\left[\left(u_{1} \frac{-1}{L_{\mathrm{e}}}+u_{2} \frac{1}{L_{\mathrm{e}}}\right)\right]\left(\frac{1}{L_{\mathrm{e}}}\right) d x=N_{2}+\int_{0}^{L_{0}} n_{0} \psi_{2}(x) d x
$$

$$
\dagger
$$

$$
\frac{E A}{L_{\mathrm{e}}}\left(u_{2}-u_{1}\right)=N_{2}+\int_{0}^{L_{\mathrm{e}}} n_{0} \psi_{2}(x) d x
$$

FEM - Matrix Equation

FE Matrix Equation

(1) $\frac{E A}{L_{\mathrm{e}}}\left(u_{1}-u_{2}\right)=-N_{1}+\int_{0}^{L_{\varepsilon}} n_{0} \psi_{1}(x) d x$
(2) $\frac{E A}{L_{\mathrm{e}}}\left(u_{2}-u_{1}\right)=N_{2}+\int_{0}^{L_{\mathrm{e}}} n_{0} \psi_{2}(x) d x$

Finite Element Matrix Equation

$$
\frac{E A}{L_{\mathrm{e}}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-N_{1} \\
N_{2}
\end{array}\right\}+\frac{n_{0} L_{\mathrm{e}}}{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}
$$

Matrix Notation

$$
\mathbf{K}^{k} \cdot \mathbf{u}^{k}=\mathbf{f}^{k}+\mathbf{f}_{n_{0}}^{k}
$$

FEM - Implementation steps SCtrain

- Derivation of Weak Integral Form of Governing Equation
- Approximation of Solution Variable over Finite Element Domain
- Derivation of Finite Element Matrix Equation
- Meshing \& Writing FE Matrix Equation for each FE
- The Assembly Process (Global Finite Element Matrix Equation)

Governing Diff. Eq.

- Writing Boundary Conditions
- Solution of System of Equations

FEM - Meshing

Meshing \& Writing FE Matrix Equation for each FE

$$
\begin{aligned}
& \frac{E A}{h}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-N_{1}^{\mathbb{O}} \\
N_{2}^{\mathbb{O}}
\end{array}\right\}-\frac{n_{0} h}{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} \\
& \frac{E A}{h}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{c}
-N_{2}^{Q} \\
N_{3}^{Q}
\end{array}\right\}-\frac{n_{0} h}{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}
\end{aligned}
$$

FEM - The Assembly Process

Expansion to all degrees of freedom

$$
\begin{aligned}
& \frac{E A}{h}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{c}
-N_{1}^{\perp} \\
N_{2}^{D} \\
0
\end{array}\right\}-\frac{n_{0} h}{2}\left\{\begin{array}{l}
1 \\
1 \\
0
\end{array}\right\} \\
& \frac{E A}{h}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
-N_{2}^{Q} \\
N_{3}^{Q}
\end{array}\right\}-\frac{n_{0} h}{2}\left\{\begin{array}{l}
0 \\
1 \\
1
\end{array}\right\}
\end{aligned}
$$

FEM - The Assembly Process

Adding equations together

$$
\frac{E A}{h}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1+1 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{c}
-N_{1}^{(1)} \\
N_{2}^{\oplus}-N_{2}^{(2)} \\
N_{3}^{(2}
\end{array}\right\}-\frac{n_{0} h}{2}\left\{\begin{array}{c}
1 \\
1+1 \\
1
\end{array}\right\}
$$

(2)

FEM - The Assembly Process

Adding equations together

$$
\frac{E A}{h}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1+1 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{c}
-N_{1}^{\mathbb{D}} \\
\frac{N^{(1)}}{2} N_{2}^{(2)} \\
N_{3}^{(2)}
\end{array}\right\}-\frac{n_{0} h}{2}\left\{\begin{array}{c}
1 \\
1+1 \\
1
\end{array}\right\}
$$

FEM - Boundary conditions

Applying boundary conditions

$$
\frac{E A}{h}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1+1 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right\}^{0}=\left\{\begin{array}{c}
-N_{1}^{\oplus} \\
\frac{N^{D}}{2}-N_{2}^{(2)} \\
\frac{N_{3}^{Q}}{0}
\end{array}\right\}\left[\begin{array}{l}
F_{0} \\
2
\end{array} \frac{n_{0} h}{2}\left\{\begin{array}{c}
1 \\
1+1 \\
1
\end{array}\right\}\right.
$$

FEM - System of Equations

System of equations

$$
\frac{E A}{h}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]\left\{\begin{array}{l}
0 \\
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{c}
-N_{1}^{@} \\
F_{0} \\
0
\end{array}\right\}-\frac{n_{0} h}{2}\left\{\begin{array}{l}
1 \\
2 \\
1
\end{array}\right\}
$$

Matrix Notation

$$
\mathbf{K}^{\text {glob }} \cdot \mathbf{u}^{\text {glob }}=\mathbf{f}^{g l o b}+\mathbf{f}_{n_{0}}^{\text {glob }}
$$

FEM - System of Equations

System of equations

$$
\frac{E A}{h}\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]\left\{\begin{array}{c}
0 \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right\}=\left\{\begin{array}{c}
-N_{1}^{0} \\
0 \\
F \\
0 \\
0
\end{array}\right\}-\frac{n_{0} h}{2}\left\{\begin{array}{l}
1 \\
2 \\
2 \\
2 \\
1
\end{array}\right\}
$$

Finite Element Method

- Stationary heat transfer in 2D

Boundary Element Method

- IDEA: integral based approach
- Starting point of derivation is Inverse Integral Form of governing equation
- Solution boundary is discretized into sub-domains, called boundary elements (BEs)
- In the BE sub-domain (only boundary!) we approximate unknown quantities
- ADVANTAGE: solution of governing field equations is converted into searching unknown quantities on boundary
- Suitable for solution of potential problems \& infinite problems
- DISADVANTAGE: full and non-symmetrical matrices

Boundary Element Method

- Basic differences between BVP solution methods

finite differences

finite elements

boundary elements

finite volumes

Finite Volume Method

- IDEA: integral based approach
- Starting point of derivation is Integral Form of governing equation, where the integral over solution domain is converted in surface integral around the domain
- Solution domain is discretized into sub-domains, called finite volumes (cells or control volumes)
- The unknown solution variable is constant over the cell (calculated at the centre)
- ADVANTAGE: solution of governing field equations is converted into searching unknown quantity in the cell centre.
- Continuity requirements are simply fulfilled.
- Similar to FDM, Suitable for solution of heat transfer \& fluid flow problems
- DISADVANTAGE: fulfilment of boundary conditions related to solution variable

Finite Volume Method

- Presentation on the stationary heat transfer problem

$$
\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+q_{\mathrm{v}}=0
$$

$$
\operatorname{div}[k \operatorname{grad}(T)]=-q_{\mathrm{v}}
$$

$$
\sqrt{\square}
$$

$$
\int_{\Omega} d i v[k \operatorname{grad}(T)] d \Omega=-\int_{\Omega} q_{\mathrm{v}} d \Omega \quad \text { Integration over the domain }
$$

Finite Volume Method

- Green-Gauss theorem
$\int_{\Omega} \operatorname{div}[k \operatorname{grad}(T)] d \Omega=\int_{\Gamma} k \operatorname{grad}(T) \hat{n} d \Gamma$

$\int_{\Omega} d i v[k \operatorname{grad}(T)] d \Omega=\int_{\Gamma} k \operatorname{grad}(T) \hat{n} d \Gamma$

4

$$
\int_{\Omega} \operatorname{div}[k \operatorname{grad}(T)] d \Omega=-\int_{\Omega} q_{\mathrm{V}} d \Omega
$$

$$
\int_{\Gamma} k \operatorname{grad}(T) \hat{n} d \Gamma=-\int_{\Omega} q_{\mathrm{v}} d \Omega
$$

Heat balance over control volume

Finite Volume Method

- Reduction to 1D $T=T(x)$
$\left.\int_{\Gamma} k \operatorname{grad}(T) \hat{n} d \Gamma=-\int_{\Omega} q_{\mathrm{v}} d \Omega \quad\right\rangle \int_{\Gamma} \mathrm{k} \frac{d T}{d x} \mathrm{n}_{x} d \Gamma=-\int_{0}^{\mathrm{L}} q_{\mathrm{v}} A d x$
Since the temperature is unknown, we use approximation

$$
\int_{\Gamma_{v}} \mathrm{k} \frac{d T}{d x} \mathrm{n}_{x} d \Gamma \approx\left[\left(\frac{\mathrm{kA}}{\Delta X_{\mathrm{v}}}\right)_{\mathrm{m}^{+}}\left(\mathrm{T}_{\mathrm{p}+1}-\mathrm{T}_{\mathrm{p}}\right)\right]-\left[\left(\frac{\mathrm{kA}}{\Delta X_{\mathrm{v}}}\right)_{\mathrm{m}^{-}}\left(\mathrm{T}_{\mathrm{p}}-\mathrm{T}_{\mathrm{p}-1}\right)\right]
$$

Finite Volume Method

- Reduction to 1D $T=T(x)$

$$
\int_{\Gamma} k \operatorname{grad}(T) \hat{n} d \Gamma=-\int_{\Omega} q_{\mathrm{V}} d \Omega \quad \zeta \int_{\Gamma} \mathrm{k} \frac{d T}{d x} \mathrm{n}_{x} d \Gamma=-\int_{0}^{\mathrm{L}} q_{\mathrm{v}} A d x
$$

Right-hand side of the equation, we approximate as

$$
-\int_{0}^{\mathrm{L}_{\mathrm{y}}} q_{\mathrm{v}} A d x \approx-\left(q_{\mathrm{v}}\right)_{\mathrm{p}} \mathrm{~A}_{\mathrm{p}} \mathrm{~L}_{\mathrm{v}}
$$

Finite volume equation

$$
\left[\left(\frac{\mathrm{kA}}{\Delta X_{\mathrm{v}}}\right)_{\mathrm{m}^{+}}\left(\mathrm{T}_{\mathrm{p}+1}-\mathrm{T}_{\mathrm{p}}\right)\right]-\left[\left(\frac{\mathrm{kA}}{\Delta X_{\mathrm{v}}}\right)_{\mathrm{m}^{-}}\left(\mathrm{T}_{\mathrm{p}}-\mathrm{T}_{\mathrm{p}-1}\right)\right]=-\left(q_{\mathrm{v}}\right)_{\mathrm{p}} \mathrm{~A}_{\mathrm{p}} \mathrm{~L}_{\mathrm{v}}
$$

Finite Volume Method

- System of equations

$$
\frac{k}{h}\left[\begin{array}{ccc}
-3 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right]\left\{\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right\}=\left\{\begin{array}{c}
-2 k / h T_{\text {wall }} \\
0 \\
-q_{\text {out }}
\end{array}\right\}
$$

Heat transfer problem

Thank you for your attention!

http://sctrain.eu/

VSB	TECHNICAL	IT4INNOVATIONS
$\left\|\left.\right\|_{\mid}\right\| \begin{array}{l}\text { UNIVERSITY } \\ \text { OF OSTRAVA }\end{array}$	$\begin{array}{l}\text { NATIONAL SUPERCOMPUTING } \\ \text { CENTER }\end{array}$	

