

Implementation of FEM on HPC – I

Miroslav Halilovič, **Bojan Starman**, Janez Urevc, Nikolaj Mole

Faculty of Mechanical Engineering, University of Ljubljana

June/2021

This project has been funded with support from the European Commission.

This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Methods for solution of BVP SCtrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Methods for solution of Boundary Value Problem (BVP):

- Finite Difference Method (FDM)
- Finite Element Method (FEM)
- Boundary Element Method (BEM)
- Finite Volume Method (FVM)

- IDEA: approximation of derivatives in governing equation and boundary conditions at points (grid)
- Approximation is derived based on the Taylor's series expansion
- ADVANTAGE: simple to use
- DISADVANTAGE: irregular domains, mesh preparation

Sctrain KNOWLEDGE

EA u''(x)

u(0)=0

SUPERCOMPUTING

Approximation based on the Taylor's series expansion

$$f(x_0+h) = f(x_0) + \frac{h}{1!} \frac{d^1 f(x_0)}{dx^1} + \frac{h^2}{2!} \frac{d^2 f(x_0)}{dx^2} + \frac{h^3}{3!} \frac{d^3 f(x_0)}{dx^3} + \dots$$

Finite difference approximation of 1st and 2nd derivative

• Writing boundary conditions in discrete form:

$$u(0)=0 \Rightarrow u_0 = 0$$
 $EA u(L)' = F_0 \Rightarrow u_A - u_3/(2h)$

• Writing governing equation at discrete points <u>1 to 4</u>

$$EA u''(x) = -n_0 \Rightarrow u_0 - 2u_1 + u_2 = -n_0 h^2 / (EA)$$

$$u_1 - 2u_2 + u_3 = -n_0 h^2 / (EA)$$

$$u_2 - 2u_3 + u_4 = -n_0 h^2 / (EA)$$

$$u_3 - 2u_4 + u_A = -n_0 h^2 / (EA)$$

 $=F_0$

• System of equations:

SUPERCOMPUTING

Sctrain KNOWLEDGE PARTNERSHIP

Finite Difference Method

• Stationary heat transfer in 2D

Finite Element Method

- IDEA: integral based approach
- Starting point of derivation is Weak Integral Form of governing equation
- Solution domain is discretized into sub-domains, called finite elements (FEs)
- In the FE sub-domain we approximate unknown quantities
- ADVANTAGE: simple to use for complex geometrical domains, useful for all types of physical problems
- DISADVANTAGE: computationally intensive method

FEM – Implementation steps SCtrain RNOWLEDGE PARTNERSHIP

- Derivation of <u>Weak Integral Form of Governing Equation</u>
- Approximation of Solution Variable over Finite Element Domain
- **Derivation of Finite Element Matrix Equation**
- Meshing & <u>Writing FE Matrix Equation for each FE</u>
- The Assembly Process (Global Finite Element Matrix Equation)
- <u>Writing Boundary Conditions</u>
- <u>Solution</u> of System of Equations

FEM – Implementation steps SCtrain RNOWLEDGE PARTNERSHIP

- Derivation of <u>Weak Integral Form of Governing Equation</u>
- Approximation of Solution Variable over Finite Element Domain
- Derivation of Finite Element Matrix Equation
- Meshing & <u>Writing FE Matrix Equation for each FE</u>
- The Assembly Process (Global Finite Element Matrix Equation)
- <u>Writing Boundary Conditions</u>
- Solution of System of Equations

FEM – Weak Form

Derivation of Weak Integral Form of Governing Equation

$$EA u''(x) = -n_0 \quad \text{Governing Equation}$$

$$EA u''(x) + n_0 = 0$$

$$\int_0^{L_e} (EA u''(x) + n_0)v(x) dx = 0 \quad \text{Strong Form}$$

FEM – Weak Form

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

u(x)

Derivation of Weak Integral Form of Governing Equation

$$\int_0^{L_e} EA \, u''(x) v(x) \mathrm{d}x = -\int_0^{L_e} n_0 v(x) \mathrm{d}x \quad \text{Strong Form} \quad L >> A$$

Integration by PARTS ____

FEM – Implementation steps SCtrain RNOWLEDGE PARTNERSHIP

- Derivation of <u>Weak Integral Form of Governing Equation</u>
- Approximation of Solution Variable over Finite Element Domain
- Derivation of Finite Element Matrix Equation
- Meshing & <u>Writing FE Matrix Equation for each FE</u>
- <u>The Assembly Process</u> (Global Finite Element Matrix Equation)
- <u>Writing Boundary Conditions</u>
- Solution of System of Equations

FEM – Approximation

$$\int_{0}^{L_{e}} EA u'(x)v'(x)dx = N_{2} v(L) - N_{1} v(0) + \int_{0}^{L_{e}} n_{0}v(x)dx$$

Approximation of u(x)

 $u(x) \approx \hat{u}(x) = u_1 \psi_1(x) + u_2 \psi_2(x)$

$$\hat{u}(0) = u_1 \implies \psi_1(0) = 1 \land \psi_1(L_e) = 0 \implies \psi_1(x) = 1 - \frac{x}{L_e}$$
$$\hat{u}(L_e) = u_2 \implies \psi_2(0) = 0 \land \psi_1(L_e) = 1 \implies \psi_2(x) = \frac{x}{L_e}$$
Sha

Shape functions

FEM – Implementation steps SCtrain RNOWLEDGE PARTNERSHIP

- Derivation of <u>Weak Integral Form of Governing Equation</u>
- Approximation of Solution Variable over Finite Element Domain
- Derivation of Finite Element Matrix Equation
- Meshing & <u>Writing FE Matrix Equation for each FE</u>
- The Assembly Process (Global Finite Element Matrix Equation)
- <u>Writing Boundary Conditions</u>
- Solution of System of Equations

$$EA\int_{0}^{L_{e}} u'(x) v'(x) dx = EA\int_{0}^{L_{e}} \left[\left(u_{1} \frac{-1}{L_{e}} + u_{2} \frac{1}{L_{e}} \right) \right] v'(x) dx = N_{2} v(L) - N_{1} v(0) + \int_{0}^{L_{e}} n_{0} v(x) dx$$

Choice of v(x) – Galerkin approach

(1)
$$v(x) = \psi_1(x) = 1 - \frac{x}{L_e}, \quad v'(x) = -\frac{1}{L_e}$$

$$EA\int_{0}^{L_{e}} u'(x) v'(x) dx = EA\int_{0}^{L_{e}} \left[\left(u_{1} \frac{-1}{L_{e}} + u_{2} \frac{1}{L_{e}} \right) \right] v'(x) dx = N_{2} v(L) - N_{1} v(0) + \int_{0}^{L_{e}} n_{0} v(x) dx$$

Choice of v(x) – Galerkin approach

2
$$v(x) = \psi_2(x) = \frac{x}{L_e}, \quad v'(x) = \frac{1}{L_e}$$

FE Matrix Equation

 N_1

1
$$\frac{EA}{L_{e}}(u_{1}-u_{2}) = -N_{1} + \int_{0}^{L_{e}} n_{0} \psi_{1}(x) dx$$

2 $\frac{EA}{L_{e}}(u_{2}-u_{1}) = N_{2} + \int_{0}^{L_{e}} n_{0} \psi_{2}(x) dx$

Finite Element Matrix Equation

$$\frac{EA}{L_{e}}\begin{bmatrix}1&-1\\-1&1\end{bmatrix}\begin{bmatrix}u_{1}\\u_{2}\end{bmatrix} = \begin{bmatrix}-N_{1}\\N_{2}\end{bmatrix} + \frac{n_{0}L_{e}}{2}\begin{bmatrix}1\\1\end{bmatrix}$$

Matrix Notation

$$\mathbf{K}^k \cdot \mathbf{u}^k = \mathbf{f}^k + \mathbf{f}_{n_0}^k$$

FEM – Implementation steps SCtrain RNOWLEDGE PARTNERSHIP

- Derivation of <u>Weak Integral Form of Governing Equation</u>
- Approximation of Solution Variable over Finite Element Domain
- Derivation of Finite Element Matrix Equation
- Meshing & Writing FE Matrix Equation for each FE
- **The Assembly Process** (Global Finite Element Matrix Equation)
- <u>Writing Boundary Conditions</u>
- Solution of System of Equations

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Meshing & Writing FE Matrix Equation for each FE

$$\frac{EA}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} -N_1^{(1)} \\ N_2^{(1)} \end{bmatrix} - \frac{n_0 h}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\frac{EA}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} -N_2^{\textcircled{0}} \\ N_3^{\textcircled{0}} \end{bmatrix} - \frac{n_0 h}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

FEM – The Assembly Process

Expansion to all degrees of freedom

$$\frac{EA}{h} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{cases} -N_1^{(1)} \\ N_2^{(1)} \\ 0 \end{cases} - \frac{n_0 h}{2} \begin{cases} 1 \\ 1 \\ 0 \end{cases}$$
$$\frac{EA}{h} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{cases} 0 \\ -N_2^{(2)} \\ N_3^{(2)} \end{bmatrix} - \frac{n_0 h}{2} \begin{cases} 0 \\ 1 \\ 1 \end{cases}$$

SCtrain

SUPERCOMPUTING

ERSHIP

KNOWLEDGE Partnership

FEM – The Assembly Process

Adding equations together

SCtrain

SUPERCOMPUTING

KNOWLEDGE

FEM – The Assembly Process

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

FEM – Boundary conditions

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

FEM – System of Equations

System of equations

$$\frac{EA}{h} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} -N_1^{(1)} \\ F_0 \\ 0 \end{bmatrix} - \frac{n_0 h}{2} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Matrix Notation

$$\mathbf{K}^{glob} \cdot \mathbf{u}^{glob} = \mathbf{f}^{glob} + \mathbf{f}_{n_0}^{glob}$$

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

System of equations

Finite Element Method

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

• Stationary heat transfer in 2D

Boundary Element Method

- IDEA: integral based approach
- Starting point of derivation is <u>Inverse</u> Integral Form of governing equation
- Solution <u>boundary</u> is discretized into sub-domains, called <u>boundary</u> <u>elements</u> (BEs)
- In the BE sub-domain (only boundary!) we approximate unknown quantities
- ADVANTAGE: solution of governing field equations is converted into searching unknown quantities <u>on boundary</u>
- Suitable for solution of potential problems & infinite problems
- DISADVANTAGE: full and non-symmetrical matrices

SUPERCOMPUTING

Sctrain KNOWLEDGE

Boundary Element Method

• Basic differences between BVP solution methods

- IDEA: integral based approach
- Starting point of derivation is <u>Integral Form</u> of governing equation, where the integral over solution domain is converted in surface integral around the domain
- Solution <u>domain</u> is discretized into sub-domains, called <u>finite volumes</u> (cells or control volumes)
- The unknown solution variable is constant over the cell (calculated at the centre)
- ADVANTAGE: solution of governing field equations is converted into searching unknown quantity in the cell centre.
- Continuity requirements are simply fulfilled.
- Similar to FDM, Suitable for solution of heat transfer & fluid flow problems
- DISADVANTAGE: fulfilment of boundary conditions related to solution variable

• Presentation on the stationary heat transfer problem

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + q_{\rm v} = 0$$

$$div[k grad(T)] = -q_V$$

P

 $\int_{\Omega} div [k \, grad(T)] \, d\Omega = - \int_{\Omega} q_{\rm V} \, d\Omega$ Integration over the domain

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

• Green-Gauss theorem

$$\int_{\Omega} div [k \ grad(T)] \ d\Omega = \int_{\Gamma} k \ grad(T) \ \hat{n} \ d\Gamma$$

$$\int_{\Omega} div [k \ grad(T)] \ d\Omega = -\int_{\Omega} q_{V} \ d\Omega$$

$$\int_{\Omega} div [k \ grad(T)] \ d\Omega = -\int_{\Omega} q_{V} \ d\Omega$$

$$\int_{\Gamma} k \ grad(T) \ \hat{n} \ d\Gamma = -\int_{\Omega} q_{V} \ d\Omega$$
Heat balance over control volume

• Reduction to 1D T = T(x)

Since the temperature is unknown, we use approximation

$$\int_{\Gamma_{v}} \mathbf{k} \frac{dT}{dx} \mathbf{n}_{x} d\Gamma \approx \left[\left(\frac{\mathbf{k} \mathbf{A}}{\Delta X_{v}} \right)_{\mathbf{m}^{+}} (\mathbf{T}_{p+1} - \mathbf{T}_{p}) \right] - \left[\left(\frac{\mathbf{k} \mathbf{A}}{\Delta X_{v}} \right)_{\mathbf{m}^{-}} (\mathbf{T}_{p} - \mathbf{T}_{p-1}) \right]$$

• Reduction to 1D T = T(x)

Right-hand side of the equation, we approximate as

$$-\int_{0}^{\mathrm{L}_{\mathrm{v}}} q_{\mathrm{v}} A dx \approx -(q_{\mathrm{v}})_{\mathrm{p}} \mathrm{A}_{\mathrm{p}} \mathrm{L}_{\mathrm{v}}$$

Finite volume equation

$$\left[\left(\frac{\mathbf{k}\,\mathbf{A}}{\Delta X_{\mathbf{v}}}\right)_{\mathbf{m}^{+}}(\mathbf{T}_{\mathbf{p}+1}-\mathbf{T}_{\mathbf{p}})\right]-\left[\left(\frac{\mathbf{k}\,\mathbf{A}}{\Delta X_{\mathbf{v}}}\right)_{\mathbf{m}^{-}}(\mathbf{T}_{\mathbf{p}}-\mathbf{T}_{\mathbf{p}-1})\right]=-\left(q_{\mathbf{v}}\right)_{\mathbf{p}}\,\mathbf{A}_{\mathbf{p}}\,\mathbf{L}_{\mathbf{v}}$$

• System of equations

$$\begin{bmatrix} -3 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \end{bmatrix} = \begin{bmatrix} -2k / hT_{wall} \\ 0 \\ -q_{out} \end{bmatrix}$$

Heat transfer problem

Thank you for your attention!

http://sctrain.eu/

This project has been funded with support from the European Commission.

This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.