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Different methods yield different systems of 
equations:

• Finite Difference Method (FDM) (large, sparse, 
unsymmetrical matrices)

• Finite Element Method (FEM) (large, sparse, 
generally unsymmetrical matrices)

• Finite Volume Method (FVM) (large, sparse, 
generally symmetric matrices)

• Boundary Element Method (BEM) (small 
systems, dense, unsymmetrical)

[1] https://au.mathworks.com/help/matlab/math/sparse-matrix-reordering.html
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Different applications (meshes) result in different 
systems of equations:

• Physical model is made from several parts or branches 
that are connected together (e.g. gears, spoked wheel)

• Space frames and other structures modelled with 
beams, trusses, and shells

• Blocky physical structures (solids, coupled structures in 
contact)

• 1D, 2D, 3D, degrees of freedom?

• Linear vs. nonlinear analysis?
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Sparse vs. dense matrices, bandwidth

[1] https://au.mathworks.com/help/matlab/math/sparse-matrix-reordering.html



System of linear equations

5

Influence of mesh numbering on bandwidth

Left-to-right numbering Random numbering
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Influence of mesh numbering on bandwidth   DOFNRB 1

[2] N. S. Ottosen, H. Petersson : Introduction to the Finite Element Method
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Reordering the rows and columns of a sparse matrix can influence the 
speed and storage requirements of a matrix operation

[1] https://au.mathworks.com/help/matlab/math/sparse-matrix-reordering.html



no. equations

time direct

Iterative

System of linear equations

8

Solution of a linear system of equations:

• Direct Solvers
• Gauss elimination
• Direct sparse solver (MultiFront solver)
• LU decomposition
• Cholesky method
• Domain Decomposition Method

• Iterative Solvers
• Gauss-Jacobi method
• Gauss-Seidel method
• Krylov method

5xE6
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Direct solvers:

• The direct linear equation solver finds the exact solution to this system 
of linear equations (up to machine precision).

• often represents the most time consuming part of the analysis (especially 
for large models) — the storage of the equations occupies the largest 
part of the disk space during the calculations.

• Sparsity and bandwidth have major impact on the computational time

• physical model that is made from several parts or branches that are 
connected together; a spoked wheel is a good example of a structure 
that has a sparse stiffness matrix  
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Iterative solvers:
• linear or nonlinear static, quasi-static, geostatic, pore fluid diffusion, heat 

transfer analysis ….
• iterative -> a converged solution to a given system of linear equations 

cannot be guaranteed
• when converges, the accuracy of this solution depends on the relative 

tolerance that is used
• highly sensitive to the model geometry, favouring blocky type structures 

(i.e., models that look more like a cube than a plate) with a high degree of 
mesh connectivity and a relatively low degree of sparsity

• The rate at which the approximate solution converges is directly related to the 
conditioning of the original system of equations. A linear system that is well 
conditioned will converge faster than an ill-conditioned system.
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Deciding to use an iterative solver:

• Element type, contact and constraint equations, material and geometric 
nonlinearities and material properties

• Ill-conditioned models -> the iterative solver may converge very slowly or fail to 
converge. This may occur, for example, if many elements have poor aspect ratios. 

• outperform the direct sparse solver only for blocky models when number of DOF > 
5 millions

• for some element types (i.e. cohesive) will likely lead to nonconvergence

• constraint equations  (multi-point constraints, surface-based tie constraints, 
kinematic couplings) solution cost grows linearly ->  recommended to keep such 
constraints to a minimum if possible, CONTACT -> special care must be taken due 
to large discontinuities

• material properties: large discontinuities in material behaviour (many orders of 
magnitude) will most likely converge slowly and possibly stagnate.
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Gauss elimination:

2 −2 −2 0
−2
−2
0

4
−2
−2

−2
12
−2

−2
−2
22

𝑎1
𝑎2
𝑎3
𝑎4

=

1
0

−5
7

2 −2 −2 0
0
0
0

2
−4
−2

−4
10
−2

−2
−2
22

𝑎1
𝑎2
𝑎3
𝑎4

=

1
1

−4
7

2 −2 −2 0
0
0
0

2
0
0

−4
2

−6

−2
−6
20

𝑎1
𝑎2
𝑎3
𝑎4

=

1
1

−2
7

2 −2 −2 0
0
0
0

2
0
0

−4
2
0

−2
−6
2

𝑎1
𝑎2
𝑎3
𝑎4

=

1
1

−2
2

𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝛼 𝑛 𝐵2



System of linear equations

13

direct sparse solver (MultiFront solver)

SPARSE symmetric matrices -> assembly 
and static condensation process can be 
performed at the same time! -> Frontal 
Solver can reduce the computational 
time to solve the equations dramatically 
if the equation system has a sparse 
structure 

[3] https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-09766-4_86
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direct sparse solver (MultiFront solver):

[3] https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-09766-4_86
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direct sparse solver 
(MultiFront solver):

[3] https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-09766-4_86
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Domain Decomposition Method:

𝑥𝑖 - the solution of the domain internal points 
𝑦 – the solution in the inter domain boundaries Γint.

The system of equations can be rewritten as:
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Domain Decomposition Method:
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Domain Decomposition Method:
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Domain Decomposition Method:
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Best practices – simulation of an laser-induced mechanical waves inside 
the human eye following laser medical procedures  



Thank you for your attention!

http://sctrain.eu/
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