Implementation of FEM on HPC II - Solver types

Miroslav Halilovič, Bojan Starman, Janez Urevc, Nikolaj Mole
Faculty of Mechanical Engineering, University of Ljubljana
VSB TECHNICAL \mid IT4INNOVATIONS
$\left|\left.\right|_{\mid}\right| \begin{aligned} & \text { UNIVERSITY } \\ & \text { OF OSTRAVA }\end{aligned} \quad \begin{aligned} & \text { NATIONAL SUPERCOMPUTING } \\ & \text { CENTER }\end{aligned}$

System of linear equations

Different methods yield different systems of equations:

- Finite Difference Method (FDM) (large, sparse, unsymmetrical matrices)
- Finite Element Method (FEM) (large, sparse, generally unsymmetrical matrices)
- Finite Volume Method (FVM) (large, sparse, generally symmetric matrices)
- Boundary Element Method (BEM) (small systems, dense, unsymmetrical)

System of linear equations

Different applications (meshes) result in different

 systems of equations:- Physical model is made from several parts or branches that are connected together (e.g. gears, spoked wheel)
- Space frames and other structures modelled with beams, trusses, and shells

- Blocky physical structures (solids, coupled structures in contact)
-1D, 2D, 3D, degrees of freedom?
- Linear vs. nonlinear analysis?

System of linear equations

Sparse vs. dense matrices, bandwidth

System of linear equations

Influence of mesh numbering on bandwidth

Left-to-right numbering

Random numbering

System of linear equations

Influence of mesh numbering on bandwidth

$$
B=(R+1) N_{D O F}
$$

System of linear equations

Reordering the rows and columns of a sparse matrix can influence the

 speed and storage requirements of a matrix operationA Sparse Symmetric Matrix

System of linear equations

Solution of a linear system of equations:

- Direct Solvers
- Gauss elimination
- Direct sparse solver (MultiFront solver)
- LU decomposition
- Cholesky method
- Domain Decomposition Method
- Iterative Solvers
- Gauss-Jacobi method
- Gauss-Seidel method

- Krylov method

System of linear equations

Direct solvers:

- The direct linear equation solver finds the exact solution to this system of linear equations (up to machine precision).
- often represents the most time consuming part of the analysis (especially for large models) - the storage of the equations occupies the largest part of the disk space during the calculations.
- Sparsity and bandwidth have major impact on the computational time
- physical model that is made from several parts or branches that are connected together; a spoked wheel is a good example of a structure that has a sparse stiffness matrix

System of linear equations

Iterative solvers:

- linear or nonlinear static, quasi-static, geostatic, pore fluid diffusion, heat transfer analysis
- iterative -> a converged solution to a given system of linear equations cannot be guaranteed
- when converges, the accuracy of this solution depends on the relative tolerance that is used
- highly sensitive to the model geometry, favouring blocky type structures (i.e., models that look more like a cube than a plate) with a high degree of mesh connectivity and a relatively low degree of sparsity
- The rate at which the approximate solution converges is directly related to the conditioning of the original system of equations. A linear system that is well conditioned will converge faster than an ill-conditioned system.

System of linear equations

Deciding to use an iterative solver:

- Element type, contact and constraint equations, material and geometric nonlinearities and material properties
- III-conditioned models -> the iterative solver may converge very slowly or fail to converge. This may occur, for example, if many elements have poor aspect ratios.
- outperform the direct sparse solver only for blocky models when number of DOF > 5 millions
- for some element types (i.e. cohesive) will likely lead to nonconvergence
- constraint equations (multi-point constraints, surface-based tie constraints, kinematic couplings) solution cost grows linearly -> recommended to keep such constraints to a minimum if possible, CONTACT -> special care must be taken due to large discontinuities
- material properties: large discontinuities in material behaviour (many orders of magnitude) will most likely converge slowly and possibly stagnate.

System of linear equations

Gauss elimination:

computational cost $=\alpha n B^{2}$

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
2 & -2 & -2 & 0 \\
-2 & 4 & -2 & -2 \\
-2 & -2 & 12 & -2 \\
0 & -2 & -2 & 22
\end{array}\right]\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=\left(\begin{array}{r}
1 \\
0 \\
-5 \\
7
\end{array}\right) \quad\left[\begin{array}{rrrr}
2 & -2 & -2 & 0 \\
0 & 2 & -4 & -2 \\
0 & -4 & 10 & -2 \\
0 & -2 & -2 & 22
\end{array}\right]\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=\left(\begin{array}{r}
1 \\
1 \\
-4 \\
7
\end{array}\right)} \\
& {\left[\begin{array}{rrrr}
2 & -2 & -2 & 0 \\
0 & 2 & -4 & -2 \\
0 & 0 & 2 & -6 \\
0 & 0 & -6 & 20
\end{array}\right]\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=\left(\begin{array}{r}
1 \\
1 \\
-2 \\
7
\end{array}\right) \quad\left[\begin{array}{rrrr}
2 & -2 & -2 & 0 \\
0 & 2 & -4 & -2 \\
0 & 0 & 2 & -6 \\
0 & 0 & 0 & 2
\end{array}\right]\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=\left(\begin{array}{r}
1 \\
1 \\
-2 \\
2
\end{array}\right)}
\end{aligned}
$$

System of linear equations

direct sparse solver (MultiFront solver)

SPARSE symmetric matrices -> assembly and static condensation process can be performed at the same time! -> Frontal Solver can reduce the computational time to solve the equations dramatically if the equation system has a sparse structure

System of linear equations

direct sparse solver (MultiFront solver):

Multifrontal Method. Fig. 3 Finite-element problem and examples of associated assembly trees. Fully assembled variables are shown with a dark-shaded area within each frontal matrix

System of linear equations

direct sparse solver (MultiFront solver):

System of linear equations

Domain Decomposition Method:

$$
\begin{array}{ll}
x_{1} \in \Omega_{1} & x_{i} \text { - the solution of the domain internal points } \\
x_{2} \in \Omega_{2} & y \text {-the solution in the inter domain boundaries } \Gamma_{\text {int }} . \\
x_{3} \in \Omega_{3} & \text { The system of equations can be rewritten as: }
\end{array}
$$

$$
\left[\begin{array}{cccc}
B_{1} & 0 & 0 & E_{1} \\
0 & B_{2} & 0 & E_{3} \\
0 & 0 & B_{3} & E_{3} \\
F_{1} & F_{2} & F_{3} & C
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
y
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
g
\end{array}\right)
$$

System of linear equations

Domain Decomposition Method:

$$
\left[\begin{array}{|ccc|c}
\left.\begin{array}{|ccc}
B_{1} & 0 & 0 \\
0 & B_{2} & 0 \\
0 & 0 & B_{3} \\
0 & \boldsymbol{E}_{1} \\
\boldsymbol{E}_{3} \\
\boldsymbol{E}_{3} \\
\hline \boldsymbol{F}_{1} & F_{2} & F_{3}
\end{array}\right] & \boldsymbol{C}
\end{array}\right]\left(\begin{array}{c}
\boldsymbol{x}_{1} \\
\boldsymbol{x}_{2} \\
\boldsymbol{x}_{3} \\
\boldsymbol{y}
\end{array}\right)=\left(\begin{array}{l}
\boldsymbol{f}_{1} \\
\boldsymbol{f}_{2} \\
\boldsymbol{f}_{3} \\
\boldsymbol{g}
\end{array}\right) \quad \begin{aligned}
& \\
& \hline
\end{aligned}
$$

$$
\left[\begin{array}{ll}
B & \frac{E}{E} \\
\hdashline \boldsymbol{F}
\end{array}\right]\binom{x}{\boldsymbol{y}}=\binom{f}{g} \quad B x+E y=f \Rightarrow x=B^{-1}(f-E y)
$$

$$
F B^{-1}(f-E y)+C y=g \Rightarrow\left(C-F B^{-1} E\right) y=g-F B^{-1} f
$$

$$
\boldsymbol{S}(\text { Schur Component }) \boldsymbol{y}=\boldsymbol{S}^{-\mathbf{1}}\left(\boldsymbol{g}-\boldsymbol{F} \boldsymbol{B}^{-\mathbf{1}} \boldsymbol{f}\right)
$$

System of linear equations

Domain Decomposition Method:

$$
\left[\begin{array}{ccc|c}
\left.\begin{array}{|ccc}
B_{1} & 0 & 0 \\
0 & B_{2} & 0 \\
0 & 0 & B_{3} \\
0 & E_{3} \\
E_{3} \\
E_{1} & F_{2} & F_{3} \\
C
\end{array}\right]
\end{array}\right]\left(\begin{array}{l}
E_{1} \\
\boldsymbol{x}_{1} \\
x_{2} \\
x_{3} \\
y
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
g
\end{array}\right)
$$

$$
y=S^{-1}\left(g-F B^{-1} f\right) \quad \downarrow \begin{aligned}
& x_{1}=B_{1}^{-1}\left(f_{1}-E_{1} y\right) \\
& x_{2}=B_{2}^{-1}\left(f_{2}-E_{2} y\right) \\
& x_{3}=B_{3}^{-1}\left(f_{3}-E_{3} y\right)
\end{aligned}
$$

System of linear equations

Domain Decomposition Method:

System of linear equations

Best practices - simulation of an laser-induced mechanical waves inside the human eye following laser medical procedures

Thank you for your attention!

http://sctrain.eu/

VSB	TECHNICAL	IT4INNOVATIONS
$\left\|\left.\right\|_{\mid}\right\| \begin{array}{l}\text { UNIVERSITY } \\ \text { OF OSTRAVA }\end{array}$	$\begin{array}{l}\text { NATIONAL SUPERCOMPUTING } \\ \text { CENTER }\end{array}$	

