

Nonlinear problems in FEM – Contact nonlinearities

dr. Borut Černe

University of Ljubljana, Faculty of Mechanical Engineering

This project has been funded with support from the European Commission.

This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Case 1: Static 2D plane-stress contact case

Time: 1. s

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

- Cylinders thickness: 10 mm
- Use various linear and nonlinear contact algorithms and compare the results

Case 2: Moving cylinder on plate - 2D plane stress case

Case 2: Moving cylinder on plate - 2D plane stress case

- Body thickness: 10 mm
- Analysis time: 1 s
- Translation in the *x*-direction: 40 mm
- Force rises linearly from F_y = 0 to F_y = -100 N
- Evaluate the normal contact stress in th *y*-direction

G: Cylinder_on_plate_T1_frictionless_finer_mesh Normal Stress Type: Normal Stress(Y Axis) Unit: MPa Global Coordinate System Time: 1 Deformation Scale Factor: 1.0 (True Scale) 29. 06. 2021 10:00

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Individual case: Linear roller

- Use static structural analysis method
- Body thickness: 100 mm
- Analysis time: 2 s
- Translation in the *x*-direction: 10 mm
- Use frictional contact with μ = 0.5
- Use boundary conditions and load as shown in the figure
- Force rises linearly from $F_y = 0$ (at t = 0 s) to $F_y = -150$ N (at t = 2 s)
- Evaluate the normal contact stress in th *y*-direction

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Individual case: Linear roller

Thank you for your attention!

http://sctrain.eu/

This project has been funded with support from the European Commission.

This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.