

Numerical modelling of the thermomechanical beahviour of polymer gears

dr. Borut Černe

University of Ljubljana, Faculty of Mechanical Engineering

About LECAD Lab

Laboratory for Engineering Design and Supercomputing

- CAD/CAE modelling, PLM,
- HPC based numerical simulations,
- Experimental testing,
- Engineering design methodology,
- Product development,
- Eco-design,
- Industrial design

www.lecad.fs.uni-lj.si

Industrial R&D - Central drive system for pedelec e-bike:

dr. Jože Tavčar, Borut Černe, Damijan Zorko

Fusion project, ITER - HPC based numerical modelling and visualization

• dr. Leon Kos, dr. Janez Povh, dipl. ing. str. Matic Brank

Analyses of the blod flow in an LVAD heart pump, PhD work project :

• dr. Primož Drešar

Goal:

 Apply and compare advanced turbulence models to accurately predict the flow induced stresses on blood cells

Sctrain KNOWLEDGE

SUPERCOMPUTING

Leg prosthesis, PhD work project

Dr. Ivan Demšar

Wind barrier motorway protection

Sctrain KNOWLEDGE PARTNERSHIP

SUPERCOMPUTING

Polymer gear research - Motivation Sctrain KNOWLEDGE PARTNERSHIP

Motivation

ENGINEERING POLYMERS

(global market):

Markets and Markets[™] Inc.

Motivation

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Polymer gears exposed to various failure mechanisms:

Fatigue

Wear

Thermal overload

- Predominant failure mode depends:
 - gearing geometry
 - material pair
 - load regime,
 - lubrication,
 - environmental conditions,
- Temperature rise during running influencing factor and indicator of the expected gear service life

Physical background

Thermal state of polymer gears:

- Heat generation effects:
 - Sliding friction effect (predominant)
 - Deformational hysteresis structural and rolling friction

Heat dissipation:

- Thermal conduction through solids
- Convective heat transfer
- Contact conductance
- Radiation (minor effect)

Heat partitioning:

Distribution of generated heat between both gear bodies

Flash temperature rise

Temperature rise – two components:

Nominal temperature

State of the art

Existing polymer gear thermal models

Problem breakdown

- Processes taking place at two very distinct time scales:
 - **1. Meshing cycle** typically $t < 10^{-1}$ s
 - **2.** Running till steady state reached $t \ge 10^3$ s

Case study – LECAD gear geometry

- **Polymer-polymer** involute spur gear pair
 - Pinion: POM (Ensinger Tecaform AH nat.)
 - Gear: PA66 (Ensinger Tecamid66 nat.)
- Cut samples

Parameter	Symbol [unit]	Value
Gear ratio	i [/]	1
Module	<i>m</i> [mm]	1
Teeth number	Z _{1,2}	20
Pressure angle	α [°]	20
Face width	<i>b</i> [mm]	6
Shaft diameter	<i>d</i> _h [mm]	6

Mechanical contact problem (I) - model

- Goal: evaluate contact response during gear meshing
- **Transient FEM** contact analysis
- Geom. simplification: gear segment with 2D plane stress presumption
- Gear profile: involute
- Linear elasticity assumption
- Nonlinear analysis due to
 - geometric and
 - contact nonlinearities

15

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Scalability of the FEM mechanical model

• 2D model:

Mechanical contact problem (II) – convergence and accuracy of results issues

- Correct contact modelling of key importance
- Convergence issues can occur in the analysis

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Thermal problem (I) – Local temperature rise

Heat partitioning coefficient

Parabolic heat flux function:

$$q_{\rm l}(x,t) = \mu \cdot v_{\rm s}(t) \cdot p_{\rm c}(t) \left[1 - \frac{x^2}{c(t)^2}\right]^{\frac{1}{2}}$$

Contact temperature equality:

$$\Delta T_{l,d}(-c(t) < x < c(t), z = 0) = \Delta T_{l,f}(-c(t) < x < c(t), z = 0)$$

Thermal problem (II) – Nominal (bulk) temperature rise

Geometric model:

Convection:

FEM geometry:

Heat generation (based on mech. FEM):

Thermal problem (III) – Obtainable results

Load conditions:

n	M [N]	\rightarrow	
[rpm]	0,4	0,6	0,8
956	C1	C2	C3
1147	C4	C5	C6
1434	C7	C8	C9

Flash temp (semi-analytical model):

Reference point Temperature [°C] 39.071 Max 36.848 34.625 32.401 30.178 Analysed tooth 27.954 25.731 23.507 21.284 19.061 Min 0.004 (m) 0.003

Nominal temperature:

Experimental validation – Free thermal flow (FTF) tests

Load conditions:

n	M [N]	\rightarrow	
[rpm]	0,4	0,6	0,8
956	C1	C2	C3
1147	C4	C5	C6
1434	m C7	C8	C9

HS thermal camera measurements: ~1900 fps

Measurement window:

Nominal temp. at root:

Model application to thermally dissimilar material pairs

Case study: steel (42CrMo4) + POM-C

Parameter	Symbol [Unit]	POM (Tecaform AH)	S. (42CrMo4)
Density	ρ [kg/m3]	1410	7800
Specific heat	$c_{\rm p} \left[J/({\rm kgK}) \right]$	1400	≈470
Thermal conductivity	k [W/(mK)]	0.39	≈42.5

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Model application to thermally dissimilar material pairs

• Necessary upgrade: modelling of a tooth pair in active contact

Influence of viscoplastic (VP) properties on the temperature rise

- Case study: steel (42CrMo4) + POM-C
- Analysis of thermo-viscoplastic properties of POM-C
- Analytical modelling Anand model
 - Development of nonlin. regression model for parameter identification
 - Full gear meshing analysis

Influence of viscoplastic (VP) properties on the temperature rise

Model use for polymer gear thermal optimisation

Model use for polymer gear thermal optimisation

Example 2: tooth profile optimisation

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Insights on polymer gear testing

Free thermal flow (FTF) testing

FTF tests: only gears with same geometry should be compared

Conclusion

Benefits of the developed model:

- High versatility applicability to any type of cylindrical spur gear pair
- Applicability to wide variety of material pairs
- Possibilities for thermal gear optimisation
- Computational efficiency

Open challenges

- Precise coefficient of friction (COF) characterisation
- Necessity for high-end (commercial) FEM software
- Not yet upgraded to use on helical and other gear types

Thank you!

Contact:

in linkedin.com \rightarrow Borut Cerne

Univerza v Ljubljani

TU VIEN TECHNISCHE UNIVERSITÄT WIEN

VSB TECHNICAL ||||| UNIVERSITY OF OSTRAVA IT4INNOVATIONS NATIONAL SUPERCOMPUTING CENTER

