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Beginning End Description Slot duration

1 9:00 10:30

1. Heterogeneous Parallel Computing 
2. GPU Architecture 
3. Hands-on: Accessing GPU accelerated nodes 
4. Hands-on: Benchmark HW properties 
5. CUDA Programming

1. 9 slides 
2. 15 slides 
3. --
4. --
5. 21 slides

1. 15 minutes 
2. 20 minutes 
3. 10 minutes 
4. 10 minutes 
5. 25 - 30 minutes     _
Total: 80 – 85 minutes 

90 min

10:30 10:45 Coffee break

2 10:45 11:45

1. Hands-on: Hello World in CUDA
2. CUDA Programming cont.
3. Hands-on: Vector Addition (single GPU, two versions) 
4. Multi-GPU programming 

1. .
2. 10 slides 
3. --
4. 10 slides

1. 10 minutes
2. 10 – 15 minutes 
3. 15 minutes 
4. 10 – 15 minutes    _
Total: 45 – 55 minutes

60 min

11:45 12:00 Coffee break

3 12:00 13:00

1. Hands-on: Vector Addition (multi-GPU, two versions) 
2. Multi-Dimensional Grids 
3. Hands-on: Image Blur
4. Thread Execution
5. CUDA Memories

1. .
2. 10 slides 
3. --
4. 9 slides
5. 5 slides 

1. 15 minutes 
2. 10 - 15 minutes 
3. 10 minutes 
4. 10 - 12 minutes 
5. 5 minutes               _
Total: 50 – 57 minutes 

60 min

13:00 14:00 Lunch break

4 14:00 15:15

1. Global Memory
2. Hands-on: Matrix Sum
3. Shared Memory
4. Memory and Data Locality: Tiling Technique
5. Hands-on: Tiled Matrix Multiplication 

1. 12 slides 
2. --
3. 13 slides 
4. 45 slides 
5. --

1. 15 minutes
2. 10 minutes
3. 10 minutes 
4. 35 - 45 minutes 
5. 10 minutes            _
Total: 70 – 80 minutes 

75 min

15:15 15:30 Coffee break

5 15:30 16:45

1. Parallel Computation Patterns: Stencil
2. Parallel Computation Patterns: Reduction
3. Parallel Computation Patterns: Histogram
4. Efficient Host-Device Data Transfer and CUDA Streams
5. Hands-on: Heat Transfer mini-apd

1. 23 slides  
2. 9 slides
3. 15 slides 
4. 10 slides
5. .

1. 25 – 30 minutes 
2. 10 – 15 minutes 
3. 15 – 20 minutes 
4. 10 – 15 minutes 
5. 30 minutes            _
Total: 65 – 75 minutes

75 min

16:45 17:00 Closing remarks Total: 360 minutes (6 hours)

Course outline
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Heterogeneous Parallel 
Computing 



Accelerators in HPC
Historical Analysis 
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Vector 
Machines

MPPs with 
Multicores and 
Heterogeneous 

Accelerators

Massively
Parallel 

Processors

1993 2008
End of Moore’s Law in Clocking!

Performance

Time

PetaFLOPS (Cell)
PetaFLOPS (GPU)

2011

TeraFLOPS (MPPs)

IBM Roadrunner (2008) 
• the first heterogeneous supercomputer
• installed in Los Alamos National Lab
• 6,480 AMD Opteron processors 

• with 52 TB RAM
• 12,960 PowerXCell 8i processors
• 296 racks - 2.35 MW power consumption



Accelerators in HPC
Historical Analysis 
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Computer # CPU
cores Year

Fugaku, Japan 7 630 848 2020

Summit, USA 2 414 592 2018
Sunway TAIHULIGHT 10 649 600 2016
TIANHE-2, CHINA 3 120 000 2015
Titan, USA 560 640 2012
Sequoia, USA 
(BlueGene/Q) 1 572 864 2012

K-Computer, Japan 548 352 2011

Tianhe-1A, China 186 368 2010

Jaguar, Cray 224 162 2009
Roadrunner, USA 122 400 2008
BlueGene/L 212 992 2007



Accelerators in HPC
ORNL Summit Supercomputer
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Feature 

Number of Nodes 4,608 

Performance 200 PF Peak, 148 Linpack (FP64)
3.3 ExaOps (FP16)

Node performance 42 TF 

Memory per Node 512 GB DDR4 + 96 GB HBM2 

NV memory per Node 1600 GB 

Total System Memory >10 PB DDR4 + HBM2 + Non-volatile

System Interconnect Dual Rail Infiniband EDR (25 GB/s) 

Interconnect Topology Non-blocking Fat Tree

Processors 2x IBM POWER9 
6x NVIDIA Volta

File System 250 PB, 2.5 TB/s, GPFSTM 

Power Consumption 13 MW 

Summit: DOE/SC/Oak Ridge National Laboratory

No.1 from Jun 2018 until Nov 2019

Currently no. 2



Accelerators in HPC
ORNL Summit Supercomputer
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• Coherent memory across entire node 

• NVLink v2 fully interconnects three GPUs and 
one CPU on each side node 

• PCIe Gen4 connects NVMe and NIC 

• Single shared NIC with dual EDR ports 



Accelerators in HPC
Distributed Shared Memory GPU Systems
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NVIDIA DGX-2
• 2x x86 CPUs with 1.5 TB RAM
• 16x Nvidia Tesla V100 GPU (Volta 

architecture)
• 2560 FP64 cores
• 5120 FP32 cores
• 640 tensor cores
• 32 GB HBM2 memory @ 900GB/s

• 512GB HBM total GPU memory 
• 6x NVlink @ 25+25GB/s = 150+150 GB/s 

total 
• NVLINK network interconnecting GPGPU
• 12x NVSwitch, throughput 2.4TB/s in 

bisection
• 8x 100Gb/s Infiniband
• NVMe SSD storage 30TB
• 130TF Peak!



Accelerators in HPC 
Heterogeneous Computing
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PC

µP
• Transfer of Control
• Input Data

• Output Data
• Transfer of Control

Hardware Accelerators - Speeding up the Slow Part of the Code
• Enable higher performance through fine-grained parallelism
• Offer higher computational density than CPUs
• Accelerators present heterogeneity!

Main Features
• Coprocessor to the CPU
• PCIe based interconnection
• Separate GPU memory
• Provide high bandwidth access to local data
• Slow access to the CPU memory 

Vector Engine
Processors



Accelerators in HPC
Accelerators
• tailored for compute-intensive, highly data 

parallel computation 
• many parallel execution units 
• have significantly faster and more advanced 

memory interfaces
• more transistors is devoted to data processing 
• less transistors for data caching and flow control

Very Efficient For
• Fast Parallel Floating Point Processing
• High Computation per Memory Access

Not As Efficient For
• Branching-Intensive Operations
• Random Access, 
• Memory-Intensive Operations
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DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPUs
Powerful ALU
• reduced operation latency
Large caches
• convert long latency memory accesses to 

short latency cache accesses
Sophisticated control with branch 
prediction for reduced branch latency

GPUs
Small caches to boost memory throughput
Simple control with no branch prediction
Energy efficient ALUs
• many, long latency but heavily 

pipelined for high throughput
Require massive number of threads to 
tolerate latencies



Accelerators in HPC
Accelerators
• tailored for compute-intensive, highly data 

parallel computation 
• many parallel execution units 
• have significantly faster and more advanced 

memory interfaces
• more transistors is devoted to data processing 
• less transistors for data caching and flow control

Very Efficient For
• Fast Parallel Floating Point Processing
• High Computation per Memory Access

Not As Efficient For
• Branching-Intensive Operations
• Random Access, 
• Memory-Intensive Operations
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NVIDIA Corporation 2010 

GPU are throughput devices 
• CPU cores are optimized to minimize latency between operations.
• GPUs aim to minimize latency between operations by scheduling 

multiple warps (thread bundles).



Accelerators in HPC 
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Device
Fabrication

process
[nm]

Clock
frequen

cy
[GHz]

No. of
cores

Peak floating
point 

performance 
SP/DP 

[GFLOPs]

Peak power
consumption

[W]

Perf. Per 
Watt SP/DP 
[GFLOPs/W]

Theoretical
Memory

Bandwidth
[GB/s]

Memory
type

Intel Xeon Platinum 8180 14 1.7 28 3046/1523 205 15/7 128 DDR4

nVidia Tesla V100 12 1.246 5120DP
2560SP 15700/7800 300 52/26 900 HBM2

Intel Xeon Phi KNL 14 1.3 64 5324/2662 215 25/12 400/102.4 MCDRAM/
DDR4

Matrix-2000 ? 1.2 128 4914/2457 240 20/10 143.1 DDR4

NEC SX-Aurora 16 1.6 8 4900/2450 ? ? 1200 HBM2

Intel Stratix 10 DX 14 1? 11520 
DSPs 8600 (SP) ? ? 512 HBM2

Intel Agilex 10 ? ? 40000 (FP16) ? ? 512 HBM2

Xilinx Alveo U280 16 ? 9024 DSP 24.5 (INT8 
TOPs) 225 109 GOPs/W 38/460 DDR4/

HBM2

Xilinx Alveo U250 16 ? 12288 33.3 (INT8 
TOPs) 225 148 GOPs/W 77 DDR4
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GPU Architecture



Accelerators in HPC
Evolution of Graphics Processors

Till 90s
• VGA controllers used to accelerate some display functions 
Mid 90s to mid 00s
• Fixed-function graphic accelerators for the OpenGL and DirectX APIs

• Some GP-GPU capabilities on top of the interface

• 3D graphic: triangle setup & rasterization, texture mapping & shading 
Modern GPUs
• Programmable multiprocessors (optimized for data-parallel ops)

• OpenGL/DirectX and general purpose language

• Some fixed function hardware (texture, raster, ops, ….)

18

Graphic Pipeline (for last 20 years)

Vertex

Triangle

Pixel

ROP

Memory

T&L evolved to vertex shading

Triangle, point, line - setup

Flat shading, texturing, eventually, 
Pixel shading

Blending, Z-buffering, antialliasing

Wider and faster over years 



Accelerators in HPC
Non-unified GPU Architecture GeForce 7800 GTX
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Triangle Setup/Raster

Shader Instruction Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

8 Vertex Engines

24 Pixel Shaders

16 Raster Operation Pipelines



Accelerators in HPC
Why Unify Shader Processors?
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Accelerators in HPC
Unified Architecture G80 - Graphics Mode
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The future of GPUs is programmable processing architecture built around the processor.



Accelerators in HPC
Why Unify Shader Processors?
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Accelerators in HPC
Why Unify Shader Processors?
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Dynamic resource realocation



Accelerators in HPC
Unified Architecture G80 - Graphics Mode
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The future of GPUs is programmable processing architecture built around the processor.



Accelerators in HPC
Unified Architecture G80 - Compute Mode
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• processors execute computing threads
• new operating mode - HW interface for computing or accelerator

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store



Accelerators in HPC
NVIDIA A40 Architecture

• Based on Ampere architecture GA102 
chip designed for 3D graphics rather 
than scientific computing 

• GA102 GPU also features 168 FP64 
units (two per SM), 

• FP64 TFLOP rate is 1/64th the TFLOP 
rate of FP32 operations. 

• the small number of FP64 hardware 
units are included to ensure any 
programs with FP64 code operate 
correctly

26https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

GA102 Full GPU with 84 SMs

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf


Accelerators in HPC
NVIDIA A40 Architecture

• Based on Ampere architecture GA102 
chip designed for 3D graphics rather 
than scientific computing 

• GA102 GPU also features 168 FP64 
units (two per SM), 
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https://www.nvidia.com/content/PDF/nvidia-ampere-
ga-102-gpu-architecture-whitepaper-v2.pdf

GA102 Full GPU with 84 SMs

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf


Accelerators in HPC
NVIDIA A40 Architecture

GA10x Streaming Multiprocessor (SM)
• includes four SM processing blocks (also called partitions)

• 32 FP32 operations per clock, or 

• 16 FP32 and 16 INT32 operations per clock

• In compute mode, the GA10x SM will support the following 
configurations:

• 128 KB L1 + 0 KB Shared Memory
• 120 KB L1 + 8 KB Shared Memory

• 112 KB L1 + 16 KB Shared Memory
• 96 KB L1 + 32 KB Shared Memory
• 64 KB L1 + 64 KB Shared Memory

• 28 KB L1 + 100 KB Shared Memory

28

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-
architecture-whitepaper-v2.pdf

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf


Accelerators in HPC
NVIDIA A40 Architecture

Tensor Cores
• specialized execution units designed specifically for 

performing the tensor / matrix operations that are the core 
compute function used in Deep Learning

• accelerate the matrix-matrix multiplication

29https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

Ampere architecture tensor core 

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf


Architecture of 
GPU Accelerated Compute Node 
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CPU 0

GPU
GPU Memory

(GDDR,
HBM,…)

CPU Memory
(DDR4,…) I/O Hub (IOH) NVMe storage

Network 
InterfaceQPI/UPI

12.8 GB/s (QPI)
20.8 GB/s (UPI)

PCIe: 16-lane PCIe Gen3: 16 GB/s

DDR4 2666 MHz
128 GB/s
100s of GB

GDDR5: 100s GB/s, 10s of GB
HBM2: ~1 TB/s, 10s of GB

CPU 1CPU Memory
(DDR4,…)

I/O Hub 
(IOH) GPUGPU Memory

(GDDR, HBM,…)
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Compute node evaluation
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$ nvidia-smi topo -m 

GPU0 GPU1 mlx5_0 CPU Affinity NUMA Affinity 
GPU0 X SYS NODE 0-7,16-23 0 
GPU1 SYS X SYS 8-15,24-31 1 
mlx5_0 NODE SYS X 

Legend:
X  = Self 
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) 
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node 
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) 
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) 
PIX = Connection traversing at most a single PCIe bridge 
NV# = Connection traversing a bonded set of # NVLinks

Note:
CPU: 2x 8-core AMD EPYC 7252 @3.1GHz
GPU: 2x NVIDIA A40 GPUs



Accelerators in HPC
Compute node evaluation 
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CPU 0
8-core AMD EPYC

7252 @3.1GHz

GPU 0
A40GPU Memory

CPU Memory
(DDR4,…) I/O Hub (IOH) Network 

Interface

Infinity fabric
54 GB/s theoretical BW

PCIe: 16-lane PCIe Gen4: 32 GB/s

DDR4 2666 MHz
85.3 GB/s theoretical BW
256 GB total

GDDR6: 696 GB/s, 48 GB

CPU 1
8-core AMD EPYC

7252 @3.1GHz

CPU Memory
(DDR4,…) I/O Hub (IOH) GPU 1

A40

GPU Memory
(GDDR,
HBM,…)
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Connecting to
VSC3 cluster

for hands-on exercises



Accesing the GPU Accelerated 
Compute Nodes of the Cluster
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• ssh to the Vienna Scientific Cluster 3 (VSC3), via a jump host vmos
• ssh -t trainee99@vmos.vsc.ac.at vsc3

• Everyone logs in under the same shared user trainee99 – TAKE CARE

• In Zoom you will be provided a password, enter it TWICE (for vmos and vsc3)
• If the second prompt for password does not show, ctrl+C and try connecting again (might happen multiple times)

• No need to allocate a slurm job, the job is already running
• you just need to ssh to the correct node

• Instructions how to find out your GPU and node will be provided in Zoom

• For Windows users, Putty instructions are on the next slide

me@my-home-pc:~$ ssh -t trainee99@vmos.vsc.ac.at vsc3
trainee99@vmos.vsc.ac.at's password: <the_password>
...some-stuff-you-can-ignore...

Password: <the_password>
[trainee99@l31 ~]$



Accesing the GPU Accelerated 
Compute Nodes of the Cluster
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• Connecting to VSC3 on Windows using Putty
• Download at https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
• HostName: vmos.vsc.ac.at
• Port: 22
• Connection type: SSH
• Left menu --> SSH --> Remote command: vsc3
• Open --> in terminal - login as: trainee99

• After that, everything is the same as on the previous slides

• For future, I recommend checking out WSL2 (Windows subsystem for Linux)

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html


• Hands-on sources also available at https://code.it4i.cz/training/sc_train_2

• Editing the source code files to complete the tasks:
• vim, emacs, nano, …, directly on VSC3
• Visual Studio Code and Remote SSH extension

• Use ssh -J trainee99@vmos.vsc.ac.at trainee99@vsc3.vsc.ac.at command line for connecting

• Edit files locally on your PC, then scp or rsync to VSC3 (replace 123 with your ID)
• scp -o "ProxyJump trainee99@vmos.vsc.ac.at" my_file.txt trainee99@vsc3.vsc.ac.at:~/my_home_dir/CUDA/path/

• rsync -r -e "ssh -J trainee99@vmos.vsc.ac.at" . trainee99@vsc3.vsc.ac.at:~/my_home_dir/CUDA/

• When you are located inside the folder cloned from the git

• Again, enter the password twice when connecting
• In case the second prompt for password to VSC3 does not show, cancel and try again
• Same weird behavior as described on previous slide

• Again, everyone is logged in under the same user, so BE CAREFUL

36

General info on the hands-on exercises

https://code.it4i.cz/training/sc_train_2
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Hands on: 
Benchmark Hardware 

Properties 



Hands on 
Benchmark Hardware Properties 

• cd 00_gpu_info

• Run the following benchmarks and complete the TODO values on next 2 slides
• Note: there are two participants on each node, if both run the benchmark at the same time, 

performance might be lower
• Retrieve information about the available GPUs, find global memory capacity

• ./run_1_device_query.sh

• Measure CPU memory (RAM) bandwidth
• ./run_2_memory_bw_cpu.sh

• Measure GPU memory bandwidth, compare it with CPU memory bandwidth
• ./run_3_memory_bw_gpu.sh

• Measure CPU-GPU data transfer bandwidth
• ./run_4_copy_bw_cpu_gpu.sh

• Measure GPU-GPU data transfer bandwidth, compare with CPU-GPU data transfer bandwidth
• ./run_5_copy_bw_gpu_gpu.sh

38



Hands on 
Benchmark Hardware Properties 
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CPU 0
8-core AMD EPYC

7252 @3.1GHz

GPU 0
A40

GPU Memory
TODO: find GPU 
global memory 

capacity

CPU Memory
(DDR4,…) I/O Hub (IOH) Network 

Interface

PCIe: 16-lane PCIe Gen4: 32 GB/s theoretical bandwidth 
Benchmark: bandwidthTest from CUDA samples
TODO: Measure PCIe bandwidth 

Theoretical 85.3 GB/s
Benchmark: STREAM benchmark
TODO: Measure CPU memory bandwidth 

GDDR6: Theoretical bandwidth: 696 GB/s
Benchmark: BabelStream
TODO: Measure global mem. bandwidth 



Hands on 
Benchmark Hardware Properties 
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CPU 0
8-core AMD EPYC

7252 @3.1GHz

GPU 0
A40GPU MemoryI/O Hub (IOH)

CPU 1
8-core AMD EPYC

7252 @3.1GHz
I/O Hub (IOH) GPU 1

A40

GPU Memory
(GDDR,
HBM,…)

Measure GPU interconnect performance 
Theoretical bandwidth: 32 GB/s (PCIe Gen4)
Benchmark: OSU benchmark
TODO: Measure GPU to GPU mem. bandwidth 



$ ./run_5_copy_bw_gpu_gpu.sh
...

# OSU MPI-CUDA Bandwidth Test
# Send Buffer on DEVICE (D) and Receive Buffer on DEVICE 
(D)
# Size        Bandwidth (MB/s)
1024                    188.05
2048                    394.65
4096                    817.17
8192                   1732.43
16384                  3551.33
32768                  6935.73
65536                 12408.54
131072                17182.50
262144                20774.41
524288                23185.55
1048576               24647.77
2097152               25442.60
4194304               25857.67
8388608               26051.70
16777216              26170.93
33554432              26231.38
67108864              26260.76

$ ./run_2_memory_bw_cpu.sh
...
-------------------------------------------------------------
Function    Best Rate MB/s  Avg time     Min time     Max time
Copy:          79567.2 0.050298     0.050272     0.050332
Scale:          53722.3     0.074535     0.074457     0.074618
Add:            57829.1     0.103843     0.103754     0.103920
Triad:          57774.5     0.103947     0.103852     0.104022
-------------------------------------------------------------
Solution Validates: avg error less than 1.000000e-13 on all three arrays
-------------------------------------------------------------

Hands on – solution, output
Benchmark Hardware Properties

41

$ ./run_1_device_query.sh
...
Detected 2 CUDA Capable device(s)

Device 0: "A40"
CUDA Driver Version / Runtime Version          11.2 / 11.4
CUDA Capability Major/Minor version number:    8.6
Total amount of global memory:                45634 MBytes (47850782720 bytes)
(084) Multiprocessors, (128) CUDA Cores/MP:    10752 CUDA Cores
GPU Max Clock rate:                            1740 MHz (1.74 GHz)
Memory Clock rate:                             7251 Mhz
Memory Bus Width:                              384-bit
L2 Cache Size:                                 6291456 bytes
Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 

3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
Total amount of constant memory:               65536 bytes
Total amount of shared memory per block:       49152 bytes
Total shared memory per multiprocessor:        102400 bytes
Total number of registers available per block: 65536
Warp size:                                     32
Maximum number of threads per multiprocessor:  1536
Maximum number of threads per block:           1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch:                          2147483647 bytes
Texture alignment:                             512 bytes
Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
Run time limit on kernels:                     No
Integrated GPU sharing Host Memory:            No
Support host page-locked memory mapping:       Yes
Alignment requirement for Surfaces:            Yes
Device has ECC support:                        Enabled
Device supports Unified Addressing (UVA):      Yes
Device supports Managed Memory:                Yes
Device supports Compute Preemption:            Yes
Supports Cooperative Kernel Launch:            Yes
Supports MultiDevice Co-op Kernel Launch:      Yes
Device PCI Domain ID / Bus ID / location ID:   0 / 65 / 0
Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device 
simultaneously) >

Device 1: "A40"
...
> Peer access from A40 (GPU0) -> A40 (GPU1) : Yes
> Peer access from A40 (GPU1) -> A40 (GPU0) : Yes

$ ./run_3_memory_bw_gpu.sh
...
Function    MBytes/sec  Min (sec)   Max         Average
Copy       580629.471 0.00185     0.00187     0.00186
Mul         579703.149  0.00185     0.00188     0.00186
Add         584039.499  0.00276     0.00279     0.00277
Triad       584855.371  0.00275     0.00278     0.00276
Dot         572203.933  0.00188     0.00189     0.00188

$ ./run_4_copy_bw_cpu_gpu.sh
...
Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes)        Bandwidth(GB/s)
32000000                    26.2

Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes)        Bandwidth(GB/s)
32000000                    25.7
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CUDA Programming
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Applications

Libraries

Easy to use
Most Performance

Programming 
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives
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Libraries
• ease of use: 

• enables GPU acceleration without 
any GPU programming

• drop-in: 
• follow standard APIs
• minimal code changes

• quality: 
• high-quality implementations

https://www.nvidia.com/en-us/training/teaching-kits/


Ways to Accelerate Applications

44Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Compiler Directives
• ease of use

• compiler takes care of details of parallelism 
management and data movement

• portable
• code is generic, not specific to any type of 

hardware

• Example: OpenACC
• Compiler directives for C, C++, and FORTRAN

Applications

Libraries

Easy to use
Most Performance

Programming 
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

#pragma acc parallel loop 
copyin(input1[0:inputLength],input2[0:inputLength]), 

copyout(output[0:inputLength])
for(i = 0; i < inputLength; ++i) {

output[i] = input1[i] + input2[i];
}

https://www.nvidia.com/en-us/training/teaching-kits/
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Programming Languages
• Performance: best control of parallelism and 

data movement
• Flexible: the computation does not need to fit 

into a limited set of library patterns or directives
• Complex: programmer often needs to express 

more details 

CUDA C, OpenACCC

CUDA C++, ThrustC++

HybridizerC#CUDA Fortran, OpenACCFortran

PyCUDA, NumbaPython

MATLAB, MathematicaNumerical analytics

GPU Programming Languages

Applications

Libraries

Easy to use
Most Performance

Programming 
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Data Parallelism

46Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Vector addition example

Vector A A[0] A[1] A[2] A[N-1]

Vector B B[0] B[1] B[2] B[N-1]

Vector C C[0] C[1] C[2] C[N-1]

𝐴 + 𝐵 = 𝐶// Compute vector sum C = A + B
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{

int i;
for (i = 0; i < n; i++) 

h_C[i] = h_A[i] + h_B[i];
}

int main()
{
// Memory allocation for h_A, h_B, and h_C
// read h_A and h_B from file for N elements
…
vecAdd(h_A, h_B, h_C, N);

}

https://www.nvidia.com/en-us/training/teaching-kits/
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Memory Allocation in Host memory
& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

Computation in Device

Data transfer from Device to Host

Deallocation of Device Memory

CPU GPU #include <cuda.h>
void vecAdd(float *h_A, float *h_B, float *h_C, 
int n)

{
int size = n* sizeof(float); 
float *d_A, *d_B, *d_C;

// allocate device memory for A, B, and C
// copy A and B to device memory 

// kernel launch code 
// – GPU performs the actual vector addition

// copy C from the device memory

// Free device vectors
}
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(Device) Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Host

Host 
memory

Device code (kernel) can:
• R/W per-thread registers
• R/W all-shared global memory

Host code can
• Transfer data to/from per grid global 

memory 
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(Device) Grid

Global Memory

Block (0, 0)
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Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Host

Host 
memory

cudaMalloc()
• Allocates an object in the device global memory
• Two parameters

• Address of a pointer to the allocated object
• Size of allocated object in terms of bytes

cudaFree()
• Frees object from device 

global memory
• One parameter

• Pointer to freed object
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(Device) Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Host

Host 
memory

cudaMemcpy()
• memory data transfer
• Requires four parameters

• Pointer to destination 
• Pointer to source
• Number of bytes copied
• Type/Direction of transfer

• Transfer to device is synchronous 
with respect to the host
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Memory Allocation in Host memory
& Initialization of Values

CPU
int main(){

float *h_A, *h_B, *h_C;

int n = 10000000 // size of an array 
int size = n * sizeof(float); 

h_A = (float*)malloc(size); 
h_B = (float*)malloc(size);
h_C = (float*)malloc(size);

// Initialize array
for(int i = 0; i < array_size; i++){
h_A[i] = 1.0f; 
h_B[i] = 2.0f;}

vecAdd(h_A, h_B, h_C, n);

// Deallocate host memory 
free(h_A); free(h_A); free(h_C);

}

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Explicit Memory Management

52

Memory Allocation in Host memory
& Initialization of Values

Memory Allocation in Device memory

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 
int n)
{

int size = n * sizeof(float); 
float *d_A, *d_B, *d_C;
cudaMalloc((void **) &d_A, size);  
cudaMalloc((void **) &d_B, size);
cudaMalloc((void **) &d_C, size);

Host
memory

h_A

h_B

h_C
Device 

memory

d_A

d_B

d_C
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Memory Allocation in Host memory
& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 
int n)
{

int size = n * sizeof(float); 
float *d_A, *d_B, *d_C;
cudaMalloc((void **) &d_A, size);  
cudaMalloc((void **) &d_B, size);
cudaMalloc((void **) &d_C, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

Host
memory

h_A

h_B

h_C
Device 

memory

d_A

d_B

d_C
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Memory Allocation in Host memory
& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 
int n)
{

int size = n * sizeof(float); 
float *d_A, *d_B, *d_C;
cudaMalloc((void **) &d_A, size);  
cudaMalloc((void **) &d_B, size);
cudaMalloc((void **) &d_C, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Kernel run

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

Host
memory

h_A

h_B

h_C
Device 

memory

d_A

d_B

d_C

Computation in Device

Data transfer from Device to Host
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Memory Allocation in Host memory
& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

Computation in Device

Data transfer from Device to Host

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 
int n)
{

int size = n * sizeof(float); 
float *d_A, *d_B, *d_C;
cudaMalloc((void **) &d_A, size);  
cudaMalloc((void **) &d_B, size);
cudaMalloc((void **) &d_C, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Kernel run

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

cudaFree(d_A); 
cudaFree(d_B); 
cudaFree(d_C);

}

Deallocation of Device Memory
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GPU 0

Global Memory

Host

Host 
memory

• Single memory address space accessible from all CPUs/GPUs in a single server 
• maintain single copy of data

• On-demand page migration - hardware/software handles automatically the data migration between the 
host and the device maintaining consistency between them
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GPU 1

Global Memory

GPU 2

Global Memory

Unified Memory
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Device code (kernel) can:
• R/W per-thread registers
• R/W all-shared global memory
• R/W managed memory (Unified 

Memory)

Host code can
• Transfer data to/from per grid global 

memory 
• R/W managed memory Unified 

Memory)

In modern GPUs:

• there are specialized hardware units managing page faulting

• data is migrated on demand, meaning that data gets copied only on page fault

• possibility to oversubscribe memory, enabling larger arrays than the device memory size

https://www.nvidia.com/en-us/training/teaching-kits/
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(Device) Grid

Global Memory
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Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Host

Host 
memory

Unified Memory

cudaMallocManaged(void** ptr, size_t size)
• Allocates an object in the Unified 

Memory address space.
• Two parameters, with an optional third 

parameter.
• Address of a pointer to the 

allocated object
• Size of the allocated object in 

terms of bytes
• [Optional] Flag indicating if 

memory can be accessed from any 
device or stream

cudaFree()
• Frees object from unified memory.
• One parameter

• Pointer to freed object
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Can be optimized
• cudaMemAdvise(), 
• cudaMemPrefetchAsync(),
• cudaMemcpyAsync()

https://www.nvidia.com/en-us/training/teaching-kits/
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Memory Allocation in Host memory
& Initialization of Values

CPU
int main(){

float *h_A, *h_B, *h_C;

int n = 10000000 // size of an array 
int size = n * sizeof(float); 

h_A = (float*)malloc(size); 
h_B = (float*)malloc(size);
h_C = (float*)malloc(size);

// Initialize array
for(int i = 0; i < array_size; i++){
h_A[i] = 1.0f; 
h_B[i] = 2.0f;}

vecAdd(h_A, h_B, h_C, n);

// Deallocate host memory 
free(h_A); free(h_A); free(h_C);

}
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int main(){

float *A, *B, *C;

int n = 10000000 // size of an array 
int size = n * sizeof(float); 

cudaMallocManaged(&A, size); 
cudaMallocManaged(&B, size); 
cudaMallocManaged(&C, size); 

// Initialize array
for(int i = 0; i < array_size; i++){
A[i] = 1.0f; 
B[i] = 2.0f;}

vecAdd(A, B, C, n);

// Deallocate host memory 
cudaFree(h_a); cudaFree(h_b); cudaFree(h_c);

}

int main(){

float *h_A, *h_B, *h_C;

int n = 10000000 // size of an array 
int size = n * sizeof(float); 

h_A = (float*)malloc(size); 
h_B = (float*)malloc(size);
h_C = (float*)malloc(size);

// Initialize array
for(int i = 0; i < array_size; i++){
h_A[i] = 1.0f; 
h_B[i] = 2.0f;}

vecAdd(h_A, h_B, h_C, n);

// Deallocate host memory 
free(h_A); free(h_A); free(h_C);

}
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void vecAdd(float *A, float *B, float *C, int n)
{

// Kernel run
}

void vecAdd(float *h_A, float *h_B, float *h_C, 
int n)
{

int size = n * sizeof(float); 
float *d_A, *d_B, *d_C;
cudaMalloc((void **) &d_A, size);  
cudaMalloc((void **) &d_B, size);
cudaMalloc((void **) &d_C, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Kernel run

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

cudaFree(d_A); 
cudaFree(d_B); 
cudaFree(d_C);

}
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Serial code - host

Serial code - host

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Heterogeneous host (CPU) + device (GPU) application C program
• Serial parts in host C code
• Parallel parts in device SPMD kernel code

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

blockIdx.x - thread-block index
blockDim.x- number of threads in the block
threadIdx.x- thread index within a block

…
0 1 2 254 255

…

https://www.nvidia.com/en-us/training/teaching-kits/
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Device code or kernel 
• __global__ defines a kernel function

Host code – kernel execution
• say_hello<<< 2, 4 >>>()

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

__global__ void say_hello()
{
int global_index = blockIdx.x * blockDim.x + threadIdx.x;
int total_threads = blockDim.x * gridDim.x;
printf("Hello from thread %d, 

block %d, 
my global index is %d, 
total number of threads is %d\n",

threadIdx.x,
blockIdx.x,
global_index,
total_threads);

}

Each thread uses indices to decide what data to work on
• blockIdx.x – block index in x direction
• threadIdx.x – thread index in x direction 
• blockDim.x – block size (# of threads per block) in x dir.

Kernel Code

Grid dimension = # of blocks
Block dimension = # of threads per block

blockIdx.x - 0
blockDim.x - 4
threadIdx.x - 0 to 3

0 1 2 3
Thread Block 0

blockIdx.x - 1
blockDim.x - 4
threadIdx.x - 0 to 3

0 1 2 3
Thread Block 1

https://www.nvidia.com/en-us/training/teaching-kits/
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Hands-On
Hello world in CUDA
• Start simple with a classic hello world
• Choose your language of preference (C++, Fortran)

• C++ is highly recommended
• cd 01_hello_world/<lang>/Task
• Open the source code hello_world.{cu, CUF}
• Finish the TODO tasks
• Compile using

• nvcc hello_world.cu -o hello_world.x
• nvfortran hello_world.CUF -o hello_world.x

• And run as usual
• ./hello_world.x

65

C++ sample output (might be in different order):

Launching the kernel with 2 blocks, each with 4 threads
Kernel was launched, waiting for its completion
Hello from thread 0/4, block 0/2, my global index is 0/8
Hello from thread 1/4, block 0/2, my global index is 1/8
Hello from thread 2/4, block 0/2, my global index is 2/8
Hello from thread 3/4, block 0/2, my global index is 3/8
Hello from thread 0/4, block 1/2, my global index is 4/8
Hello from thread 1/4, block 1/2, my global index is 5/8
Hello from thread 2/4, block 1/2, my global index is 6/8
Hello from thread 3/4, block 1/2, my global index is 7/8
Kernel execution completed

Fortran sample output (might be in different order): 

Launching the kernel with 2 blocks, each with 4 threads
Kernel was launched, waiting for its completion

thread_index block_size block_index grid_size global_idx total_threads
1            4            1            2            1            8
2            4            1            2            2            8
3            4            1            2            3            8
4            4            1            2            4            8
1            4            2            2            5            8
2            4            2            2            6            8
3            4            2            2            7            8
4            4            2            2            8            8

Kernel execution completed
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CUDA programming
Arrays of Parallel Threads

67

A CUDA kernel is executed by a grid (array) of threads 
• All threads in a grid run the same kernel code (Single Program Multiple Data)
• Each thread has indexes that it uses to compute memory addresses and make control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…
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Divide thread array into multiple blocks
• Threads within a block cooperate via

• shared memory, 
• atomic operations and 
• barrier synchronization

• Threads in different blocks do not interact

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…

Thread Block 0 Thread Block 1 Thread Block N-1
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blockIdx and threadIdx
• Each thread uses indices to decide what data to work on

• blockIdx: 1D, 2D, or 3D
• threadIdx: 1D, 2D, or 3D 

https://www.nvidia.com/en-us/training/teaching-kits/
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Device code or kernel 
• compute vector sum C = A + B
• each thread performs one pair-wise addition
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__global__

void vecAddKernel(float* A, float* B, float* C, int n)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];

}

__global__ defines a kernel function
• each “__” consists of two underscore characters
• kernel function must return void

Each thread uses indices to decide what data to work on
• blockIdx.x – block index in x direction
• threadIdx.x – thread index in x direction 
• blockDim.x – block size (# of threads per block) in x dir.
• Note: 1D indexing uses .x only, 2D uses .x, .y and 3D uses .x, .y, .z

https://www.nvidia.com/en-us/training/teaching-kits/
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Host code 
• Kernel execution – host code that launches kernel 
• GPU hardware creates a grid of threads 
• each thread executes the kernel function from previous slide 
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void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

// d_A, d_B, d_C allocations and memory copies are done

//      x y z direction 

dim3 DimGrid (2, 1, 1); // number of blocks per grid to be launched

dim3 DimBlock(4, 1, 1); // number of threads per block to be launched 

vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);

}

https://www.nvidia.com/en-us/training/teaching-kits/
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Host code 
• Kernel execution – host code that launches kernel 
• GPU hardware creates a grid of threads 
• each thread executes the kernel function from previous slide 
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void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

// d_A, d_B, d_C allocations and memory copies are done

// launches 2 block in a grid and 4 threads per block

vecAddKernel<<<2,4>>>(d_A, d_B, d_C, n);}

}

https://www.nvidia.com/en-us/training/teaching-kits/
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Host code 
• Executes ceil(n/256.0) blocks of 256 threads each
• the ceiling function makes sure that there are enough threads to cover all elements.
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void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

// d_A, d_B, d_C allocations and memory copies are done 

vecAddKernel<<<ceil(n/256.0),256>>>(d_A, d_B, d_C, n);

}

https://www.nvidia.com/en-us/training/teaching-kits/
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Host code 
• This is an equivalent way to express the ceiling function.
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void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

// d_A, d_B, d_C allocations and memory copies are done

dim3 DimGrid((n-1)/256 + 1, 1, 1);

dim3 DimBlock(256, 1, 1);

vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);

}

https://www.nvidia.com/en-us/training/teaching-kits/
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• Host: launches „extra“ block to 
cover all elements – ensures that 
there is enough threads to 
process all elements 

• Kernel: controls that thread does 
not read unallocated memory 

• Host: DimBlock equals to
• Kernel: blockDim

• Kenel: threadIdx is in range <0,
DimBlock)

• Kenel: blockIdx is in range <0,
DimGrid)

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

dim3 DimGrid( ceil(n/256.0) , 1, 1);

dim3 DimBlock(256, 1, 1);

vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);

}

__global__

void vecAddKernel(float* A, float* B, float* C, int n)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];

}

https://www.nvidia.com/en-us/training/teaching-kits/
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Memory Allocation in Host memory
& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

Computation in Device

Data transfer from Device to Host

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 
int n)
{

int size = n * sizeof(float); 
float *d_A, *d_B, *d_C;
cudaMalloc((void **) &d_A, size);  
cudaMalloc((void **) &d_B, size);
cudaMalloc((void **) &d_C, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

vecAddKernel<<<ceil(n/256.0),256>>>
(d_A, d_B, d_C, n);

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

cudaFree(d_A); 
cudaFree(d_B); 
cudaFree(d_C);

}

Deallocation of Device Memory

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/
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Use CUDA events for timing CUDA related execution time.
• Works as "markers" in execution queue

• Besides timing, they are crucial for GPU synchronization

• Important! In order to compute elapsed time correctly. Both events 
must "happen". That is, they need to reach the end of execution 
queue

• Can be ensured by waiting for the event to "happen" using 
cudaEventSynchronize() or synchronization with entire 
GPU by cudaDeviceSynchronize()
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void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{
…
float timeInMs;
cudaEvent_t startEvent, endEvent;

cudaEventCreate(&startEvent);
cudaEventCreate(&endEvent);

cudaEventRecord(startEvent);

vecAddKernel<<<ceil(n/256.0),256>>>
(d_A, d_B, d_C, n);

cudaEventRecord(endEvent);

cudaDeviceSynchronize();
cudaEventElapsedTime
(&timeInMs, startEvent, endEvent);

cudaEventDestroy(endEvent);
cudaEventDestroy(startEvent);
...

}

CUDA programming
Kernel timing using events



#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }

inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess) 
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);

if (abort) exit(code);
}
}
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CUDA programming
Error checking

Macro and definition: 

gpuErrchk( cudaMalloc(&a_d, size*sizeof(int)) );

gpuErrchk( cudaMemcpy(a_h, a_d, size * sizeof(int), cudaMemcpyDeviceToHost) );

kernel<<<1,1>>>(a);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );

Usage:
• API calls:

• Kernel Execution 

https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
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Vector Addition 



Hands-on
Vector Addition 
Vector addition – single GPU
• cd 02_vector_add/<lang>/Task

• Task 2a: Using explicit memory management
• Open file vec_add{.cu, .CUF} and search for TODOs:

• Implement vector addition computation in CUDA kernel (slide 74)
• Fill in explicit data copy from GPU to CPU after computation (slide 75)

• Compile with --std=c++11 and run

• Task 2b: Using unified memory
• Open file vec_add_managed{.cu, .CUF} and search for TODOs:

• Allocate managed memory (slide 60)
• Compile with --std=c++11 and run
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Task 2a
__global__

void cudaVecAdd (...){

int i = threadIdx.x + blockDim.x *

blockIdx.x;

if(i<N) C[i] = A[i] + B[i];

}

...

cudaMemcpy(h_C, d_C, size,

cudaMemcpyDeviceToHost);

...

80

Solution

Task 2b
...

cudaMallocManaged(&A, size);

cudaMallocManaged(&B, size);

cudaMallocManaged(&C, size);

...



Task 2a
idx = blockDim%x * (blockIdx%x - 1) 
+ threadIdx%x

if (idx <= n) then

C(idx) = A(idx) + B(idx)

end if

...

h_C = d_C

...

81

Solution

Task 2b
...

real, allocatable, managed :: A(:), 
B(:), C(:)

allocate(A(N))

allocate(B(N))

allocate(C(N))

...
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MultiGPU programing basics
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CPU 0
E5-2650v2 8C 

2.6GHz

GPU 0
A40GPU MemoryCPU Memory

(DDR4,…) PCI-e

Network 
Interface

CPU 1
E5-2650v2 8C 

2.6GHz

CPU Memory
(DDR4,…) PCI-e GPU 1

A40

GPU Memory
(GDDR,
HBM,…)

QPI/UPI

Compute node architecture
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MultiGPU programing basics
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Multi-GPU system
• GPU's are numbered from 0 to n-1, where n is the number of GPU’s.
• The CUDA driver always starts with a default active device.
• There are two broad types of Multi GPU communication:

• Through the PCIE bus

• Through NVLINK

CPU 0

PCIE

GPU 0 IB
network

CPU 1

PCIE

GPU 1
$ nvidia-smi topo -m 

GPU0 GPU1 mlx5_0 CPU Affinity NUMA Affinity 
GPU0 X SYS NODE 0-7,16-23 0 
GPU1 SYS X SYS 8-15,24-31 1 
mlx5_0 NODE SYS X 

SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes 
(e.g., QPI/UPI) 

NODE = Connection traversing PCIe as well as the interconnect between PCIe Host

https://www.nvidia.com/en-us/training/teaching-kits/
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cudaSetDevice()
• Set GPU device to use for device code execution on the active host 

thread.
• Requires one parameter:

• An int with the device id number
• This function doesn’t affect other host threads, meaning that setting the 

device on one thread will not set the device in other host threads. Also 
doesn’t affect previous async calls.

CPU 0

PCIE

GPU 0 IB
network

CPU 1

PCIE

GPU 1

cudaGetDeviceCount()
• Get the number of CUDA-capable devices in the 

system.

• Requires one parameter:

• An int pointer to store the device count

cudaGetDevice()
• Get GPU device being currently used by the 

active host thread

• Requires one parameter:

• An int pointer to store the device id

https://www.nvidia.com/en-us/training/teaching-kits/
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CUDA host API calls for Multi GPU's
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cudaSetDevice()
• Set GPU device to use for device code execution on the active host 

thread.
• Requires one parameter:

• An int with the device id number
• This function doesn’t affect other host threads, meaning that setting the 

device on one thread will not set the device in other host threads. Also 
doesn’t affect previous async calls.

CPU 0

PCIE

GPU 0 IB
network

CPU 1

PCIE

GPU 1

Memory allocation
To allocate or associate memory with a specific device using non-Managed CUDA-API calls, it’s necessary to call 
cudaSetDevice() before doing the allocation call.

• cudaMalloc() - allocates an object in the device global memory

• cudaHostAlloc() - allocates pinned memory on the host 

https://www.nvidia.com/en-us/training/teaching-kits/
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CUDA runtime calls affected by cudaSetDevice 
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• If cudaSetDevice() was called before a kernel launching call, the kernel 
will execute in the active device. 

• It’s crucial that every non managed memory being used in the kernel 
resides in the active device, otherwise an error will occur.

• If cudaSetDevice() was called before a cudaStreamCreate(), then the 
stream will be associated with the active device.

• The synchronization functions: cudaDeviceSynchronize(), 
cudaStreamSynchronize() are also affected by cudaSetDevice(), 
synchronizing tasks only for the active device on the active host thread

CPU 0

PCIE

GPU 0 IB
network

CPU 1

PCIE

GPU 1

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA programming
Vector Addition – with kernel exec.
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Memory Allocation in Host memory
& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

Computation in Device

Data transfer from Device to Host

CPU GPU void vecAdd(float *h_A, float *h_B, float *h_C, 
int n)
{

int size = n * sizeof(float); 
float *d_A, *d_B, *d_C;
cudaMalloc((void **) &d_A, size);  
cudaMalloc((void **) &d_B, size);
cudaMalloc((void **) &d_C, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

vecAddKernel<<<ceil(n/256.0),256>>>
(d_A, d_B, d_C, n);

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

cudaFree(d_A); 
cudaFree(d_B); 
cudaFree(d_C);

}

Deallocation of Device Memory

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/
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89

Memory Allocation in Host memory
& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

CPU
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{
int n0 = n / 2; 
int n1 = n - n0;
int size0 = n0 * sizeof(float); 
int size1 = n1 * sizeof(float); 
float *d_A0, *d_B0, *d_C0;
float *d_A1, *d_B1, *d_C1;

cudaSetDevice(0);
cudaMalloc((void **) &d_A0, size0);  
cudaMalloc((void **) &d_B0, size0);
cudaMalloc((void **) &d_C0, size0);
cudaMemcpy(d_A0, &h_A[0], size0, cudaMemcpyHostToDevice);
cudaMemcpy(d_B0, &h_B[0], size0, cudaMemcpyHostToDevice);

cudaSetDevice(1);
cudaMalloc((void **) &d_A1, size1);  
cudaMalloc((void **) &d_B1, size1);
cudaMalloc((void **) &d_C1, size1);
cudaMemcpy(d_A0, &h_A[n0], size1, cudaMemcpyHostToDevice);
cudaMemcpy(d_B0, &h_B[n0], size1, cudaMemcpyHostToDevice);

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/
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Memory Allocation in Host memory
& Initialization of Values

Memory Allocation in Device memory

Data transfer from Host to Device

CPU

int n0 = floor(n/2.0);
int n1 = ceil(n/2.0); 
int size0 = n0 * sizeof(float); 
int size1 = n1 * sizeof(float); 

cudaSetDevice(0);
vecAddKernel<<<ceil(n0/256.0),256>>> (d_A0, d_B0, d_C0, n0);

cudaSetDevice(1);
vecAddKernel<<<ceil(n1/256.0),256>>> (d_A1, d_B1, d_C1, n1);

cudaMemcpy(&h_C[0], d_C0, size, cudaMemcpyDeviceToHost);
cudaMemcpy(&h_C[n0],d_C1, size, cudaMemcpyDeviceToHost);

cudaFree(d_A0); cudaFree(d_A1); 
cudaFree(d_B0); cudaFree(d_B1); 
cudaFree(d_C0); cudaFree(d_C1);

}

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Computation in Device

Data transfer from Device to Host

Deallocation of Device Memory

https://www.nvidia.com/en-us/training/teaching-kits/
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float *m_A0, float *m_B0, *m_A1, float *m_B1, int n;
int size = n * sizeof(float);

cudaSetDevice(0); // Will set the active device to 0
cudaMalloc((void**) &m_A0, size);  // Will allocate memory on device 0
cudaMalloc((void**) &m_B0, size);  // Will allocate memory on device 0 

cudaSetDevice(1); // Will set the active device to 1
cudaMalloc((void**) &m_A1, size); // Will allocate memory on device 1
cudaMalloc((void**) &m_B1, size); // Will allocate memory on device 1

// Memory initialization on the Host and memory transfers

cudaSetDevice(0); // Set the device for kernel execution
vecAdd<<<gridDim, blockDim>>>(m_A0,m_B0); 

cudaSetDevice(1); // Set the device for kernel execution
vecAdd<<< gridDim, blockDim>>>(m_A1,m_B1);

cudaFree(m_A0); cudaFree(m_B0);
cudaFree(m_A1); cudaFree(m_B1);

https://www.nvidia.com/en-us/training/teaching-kits/
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Environment variable controlling devices visibility
• Useful for selecting or restricting the set of available GPUs for specific 

application even without the access to the source code
• Execute export CUDA_VISIBLE_DEVICES=<comma separated list of 
GPU IDs> before running the app

• To list all available GPU IDs run nvidia-smi from command line
• Single GPU applications (might cooperate with a peer you share a 

node with to select different GPU):
export CUDA_VISIBLE_DEVICES=0 ./app

• Multi GPU applications:
export CUDA_VISIBLE_DEVICES=0,1 ./app

https://www.nvidia.com/en-us/training/teaching-kits/
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Hands-on
Multi-GPU Vector Addition 
Vector addition – multi-GPU
• cd 03_vector_add_multigpu/<lang>/Task

• Task 3a - Using explicit memory management
• Open file vec_add_multi_GPU{.cu, .CUF} and search for TODOs:

• Rewrite host allocation so there is only single copy of host arrays.
• Allocate arrays A, B and C with the correct size and set up h_A0, h_A1, etc. as apointers into

host arrays for particular GPU (e.g. h_A0 -> A[0], h_A1 -> A[size0])
• Compile with --std=c++11 and run (don’t forget the export CUDA_VISIBLE_DEVICES=0,1 ./app)

• Task 3b - Using unified memory
• Open file vec_add_multi_GPU_managed{.cu, .CUF} and search for TODOs:

• Same task as in 3a, but allocate managed memory for host arrays and set up the pointers
correctly

• Uncomment and think about implications of prefetching
• Compile with --std=c++11 and run (don’t forget the export CUDA_VISIBLE_DEVICES=0,1 ./app)
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Task 3a
cudaHostAlloc(&h_A, size, cudaHostAllocDefault);

cudaHostAlloc(&h_B, size, cudaHostAllocDefault);

cudaHostAlloc(&h_C, size, cudaHostAllocDefault);

h_A0 = &h_A[0]; h_A1 = &h_A[N0];

h_B0 = &h_B[0]; h_B1 = &h_B[N0];

h_C0 = &h_C[0]; h_C1 = &h_C[N0];

// Setting device 0 as current device.

gpuErrchk(cudaSetDevice(0));

// Allocation of device memory on device 0.

gpuErrchk(cudaMalloc(&d_A0, size0));

// Setting device 1 as current device.

...

gpuErrchk(cudaSetDevice(1));

// Allocation of device memory on device 0.

gpuErrchk(cudaMalloc(&d_A1, size1));

...
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Solution

Task 3b
cudaMallocManaged(&A, size);

cudaMallocManaged(&B, size);

cudaMallocManaged(&C, size);

A0 = &A[0]; A1 = &A[N0];

B0 = &B[0]; B1 = &B[N0];

C0 = &C[0]; C1 = &C[N0];
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Solution

Task 3b
real, allocatable, managed, target :: 
h_A(:), h_B(:), h_C(:)

real, managed, pointer :: h_A0(:), 
h_B0(:), h_C0(:)

real, managed, pointer :: h_A1(:), 
h_B1(:), h_C1(:)

h_A0 => h_A(1:N0) h_A1 => h_A(N0+1:N)

h_B0 => h_B(1:N0) h_B1 => h_B(N0+1:N)

h_C0 => h_C(1:N0) h_C1 => h_C(N0+1:N)

Task 3a
real, allocatable, pinned, target :: h_A(:), 
h_B(:), h_C(:)

real, pointer :: h_A0(:), h_B0(:), h_C0(:)

real, pointer :: h_A1(:), h_B1(:), h_C1(:)

h_A0 => h_A(1:N0) h_A1 => h_A(N0+1:N)

h_B0 => h_B(1:N0) h_B1 => h_B(N0+1:N)

h_C0 => h_C(1:N0) h_C1 => h_C(N0+1:N)

...

result = cudaSetDevice(0)

allocate(d_A0(N0))

...

result = cudaSetDevice(1)

allocate(d_A1(N1))
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host device

Kernel 1

Grid 1
Block 
(0, 0)

Block 
(1, 1)

Block 
(1, 0)

Block 
(0, 1)

Grid 2

Block (1,0)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)
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1 block: 
16×16 
threads 

per block

62×76 pictureWork distribution
• image will be addressed in 2D 

blocks of size
• 16x16 threads 

• some threads, highlighted in orange, 
will be idle 

Control flow divergence
• not all threads in a Block will follow 

the same control flow path

CUDA programming
Processing a Picture with a 2D Grid
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1 block: 
16×16 
threads 

per block

62×76 pictureWork distribution
• image will be addressed in 2D 

blocks of size
• 16x16 threads 

• some threads, highlighted in orange, 
will be idle 

Control flow divergence
• not all threads in a block will follow 

the same control flow path
• 4 different paths in this case 

CUDA programming
Processing a Picture with a 2D Grid

1 2

3 4
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Kernel

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

Row*Width+Col = 2*4+1 = 9 
M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11 M13M12 M14 M15

M

Row-Major Layout in C/C++__global__ void PictureKernel(float* d_Pin, 
float* d_Pout, 
int height, 
int width)

{
// Calculate the row # of 
// the d_Pin and d_Pout element
int Row = blockIdx.y*blockDim.y + threadIdx.y;

// Calculate the column # of 
// the d_Pin and d_Pout element
int Col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one 
// element of d_Pout if in range
if ((Row < height) && (Col < width)) {
d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];
}
}

https://www.nvidia.com/en-us/training/teaching-kits/
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Kernel
__global__ void PictureKernel(float* d_Pin, 

float* d_Pout, 
int height, 
int width)

{
// Calculate the row # of 
// the d_Pin and d_Pout element
int Row = blockIdx.y*blockDim.y + threadIdx.y;

// Calculate the column # of 
// the d_Pin and d_Pout element
int Col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one 
// element of d_Pout if in range
if ((Row < height) && (Col < width)) {
d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];
}
}

dim3 DimGrid((n-1)/16 + 1, (m-1)/16+1, 1);

dim3 DimBlock(16, 16, 1);

PictureKernel<<<DimGrid,DimBlock>>>(d_Pin, d_Pout, m, n);

Host Code for Launching 2D kernel
• assume that the picture is m × n, 
• m pixels in y dimension and n pixels in x dimension
• input d_Pin has been allocated on and copied to device
• output d_Pout has been allocated on device

https://www.nvidia.com/en-us/training/teaching-kits/
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grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int col = threadIdx.x + blockIdx.x * blockDim.x;
int row = threadIdx.y + blockIdx.y * blockDim.y;

if (col < width && row < height) {
// get 1D coordinate for the grayscale image
int grayOffset = row*width + col;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int  rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset + 0]; // red value for pix
unsigned char g = rgbImage[rgbOffset + 1]; // green value for pix
unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pix
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

Host code for launching the kernel is the same as in previou s slide. 

RGB Kernel: RGB color image
• 3 values per pix

• r - red
• g - green
• b - blue

Grayscale image 
• only intesity
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Converting color image to grayscale
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// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int col = threadIdx.x + blockIdx.x * blockDim.x;
int row = threadIdx.y + blockIdx.y * blockDim.y;

if (col < width && row < height) {
// get 1D coordinate for the grayscale image
int grayOffset = row*width + col;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int  rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset + 0]; // red value for pix
unsigned char g = rgbImage[rgbOffset + 1]; // green value for pix
unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pix
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

Host code for launching the kernel is the same as in previou s slide. 

RGB Kernel: 

grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

RGB color image
• 3 values per pix

• r - red
• g - green
• b - blue

Grayscale image 
• only intesity

https://www.nvidia.com/en-us/training/teaching-kits/
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Converting color image to grayscale
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// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int col = threadIdx.x + blockIdx.x * blockDim.x;
int row = threadIdx.y + blockIdx.y * blockDim.y;

if (col < width && row < height) {
// get 1D coordinate for the grayscale image
int grayOffset = row*width + col;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int  rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset + 0]; // red value for pix
unsigned char g = rgbImage[rgbOffset + 1]; // green value for pix
unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pix
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = (unsigned char)(0.21f*r + 0.71f*g + 0.07f*b);

}
}

Host code for launching the kernel is the same as in previou s slide. 

RGB Kernel: 

grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

RGB color image
• 3 values per pix

• r - red
• g - green
• b - blue

Grayscale image 
• only intesity
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Image Blur
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BlurPixel[I,J] = Average value of all pixel in 
a mask

Blur Filter
• calculates average value 

inside the mask
• BLUR_SIZE value

1 block: 
16×16 
threads 

per block
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Image Blur
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// we have 1 channel, therefore a grayscale image
// The input image is encoded as unsigned characters [0, 255]
__global__ void BlurKernel(unsigned char * inImage,

unsigned char * outImage,
int width, int height) {

int col = threadIdx.x + blockIdx.x * blockDim.x;
int row = threadIdx.y + blockIdx.y * blockDim.y;

if (col < width && row < height) {
int pixVal = 0; int pixels = 0;

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {
int curRow = row + blurRow;
int curCol = col + blurCol;

// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
pixVal = pixVal + inImage[curRow * w + curCol]; 
pixels = pixels + 1; // Total number of accumulated pixels

}
}

}

// Write our new pixel value out
outImage[Row * width + Col] = (unsigned char)(pixVal / pixels); }

}

1 block: 
16×16 
threads 

per block

BLUR_SIZE=2

BlurPixel[I,J] = Average value of all pixel in 
a mask

https://www.nvidia.com/en-us/training/teaching-kits/


This project has been funded with support from the European Commission.
This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which 
may be made of the information contained therein.

Hands-on
Image Blur



Hands-on
Image Blur
• Finish the missing code in the kernel on the previous slide
• Source code in 04_image_blur/<lang>/Task/image_blur.<ext>
• Tasks are annotated with TODO, only in the kernel
• No actual image (to simplify the code), just some pattern which is easy to check for correctness

• Compile and run with
• nvcc image_blur.cu  -o image_blur.x && ./image_blur.x

• nvfortran image_blur.CUF -o image_blur.x && ./image_blur.x
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Correct output:

Everything seems OK



CUDA programming
Image Blur - Solution
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1 block: 
16×16 
threads 

per block

BLUR_SIZE=2
// we have 1 channel, therefore a grayscale image
// The input image is encoded as unsigned characters [0, 255]
__global__ void BlurKernel(unsigned char * inImage,

unsigned char * outImage,
int width, int height) {

int col = threadIdx.x + blockIdx.x * blockDim.x;
int row = threadIdx.y + blockIdx.y * blockDim.y;

if (col < width && row < height) {
int pixVal = 0; int pixels = 0;

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {
int curRow = row + blurRow;
int curCol = col + blurCol;

// Verify we have a valid image pixel
if(curRow > -1 && curRow < height && curCol > -1 && curCol < width) {
pixVal = pixVal + inImage[curRow * width + curCol]; 
pixels = pixels + 1; // Total number of accumulated pixels

}
}

}

// Write our new pixel value out
outImage[Row * width + Col] = (unsigned char)(pixVal / pixels); }

}BlurPixel[I,J] = Average value of all pixel in 
a mask
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Thread Execution

Transparent scaling of GPU kernels 
• Kernel execution is broken in Grid of Blocks 

• blocks can be executed in any order 
relative to others

• hardware is free to assign blocks to any 
Streaming Multiprocessor (SM) at any time

• a kernel scales to any number of 
parallel processors

• this property ensures correct execution on 
GPUs with

• different number of Streaming 
Multiprocessors (different performance, 
different model of GPU accelerators 
(A100, A40, ...)

• different GPU architectures 
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https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

NVIDIA Jetson AGX Xavier
• ARM based embedded 

single board computer 
with on-chip GPU

• GPU with 8 SMs 

NVIDIA V100
• HPC accelerator  
• GPU with 80 SMs 
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Thread Execution and Warps 

Thread Execution
• blocks are assigned to Streaming Multiprocessors (SM)

• up to 32 blocks can be assigned to one SM as resources allow
• Ampere generation SM can take up to 2048 threads 

• could be 256 (threads/block) * 8 blocks 
• or 512 (threads/block) * 4 blocks, etc.

• SM maintains thread/block idx #s
• SM manages/schedules thread execution

Warps as Scheduling Units
• each Block is divided and executed as 32-thread Warps

• an implementation decision, not part of the CUDA programming 
model

• warps are scheduling units in SM
• threads in a warp execute in SIMD fashion 
• future GPUs may have different number of threads in each warp

• for instance, AMD GPUs have warp size 64 threads 
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Thread Execution and Warps 

Thread Execution cont. 
• SM implements zero-overhead warp scheduling

• Warps whose next instruction has its operands ready for 
consumption are eligible for execution

• Eligible Warps are selected for execution based on a prioritized 
scheduling policy

• All threads in a warp execute the same instruction when 
selected
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Thread Execution and Warps 

Warps in Multi-dimensional Thread Blocks
• The thread blocks are first linearized into 1D in row major order
• In x-dimension first, y-dimension next, and z-dimension last

• Linearized thread blocks are partitioned in warps 
• Thread indices within a warp are consecutive and increasing
• Warp 0 starts with Thread 0

• DO NOT rely on any ordering within or between warps
• If there are any dependencies between threads, you must 
__syncthreads() to get correct results (more later)
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Thread Execution and Warps 

SIMD Execution Among Threads in a Warp
• All threads in a warp must execute the same instruction at any point 

in time

• This works efficiently if all threads follow the same control flow path
• All if-then-else statements make the same decision
• All loops iterate the same number of times

Example of a SIMD code: 

117Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…
T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_30T_31

…

Block 1 Warps

SM

SMs are SIMD Processors

__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[i];
}
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Thread Execution and Warps 
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if(foo(threadIdx.x))

{

do_A();

}

else

{

do_B();

}

Control Divergence
• control divergence occurs when threads in a warp 

take different control flow paths by making different 
control decisions 

• some take the then-path and others take the 
else-path of an if-statement

• some threads take different number of loop 
iterations than others

• The execution of threads taking different paths are 
serialized in current GPUs

• the control paths taken by the threads in a 
warp are traversed one at a time until there is 
no more

• during the execution of each path, all threads 
taking that path will be executed in parallel
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Thread Execution and Warps 
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Control Divergence
• control divergence occurs when threads in a warp 

take different control flow paths by making different 
control decisions 

• some take the then-path and others take the 
else-path of an if-statement

• some threads take different number of loop 
iterations than others

• The execution of threads taking different paths are 
serialized in current GPUs

• the control paths taken by the threads in a 
warp are traversed one at a time until there is 
no more

• during the execution of each path, all threads 
taking that path will be executed in parallel

• the number of different paths can be large 
when considering nested control flow 
statements
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Thread Execution and Warps 

Control Divergence
• control divergence occurs when threads in a warp 

take different control flow paths by making different 
control decisions 

• some take the then-path and others take the 
else-path of an if-statement

• some threads take different number of loop 
iterations than others

• The execution of threads taking different paths are 
serialized in current GPUs

• the control paths taken by the threads in a 
warp are traversed one at a time until there is 
no more

• during the execution of each path, all threads 
taking that path will be executed in parallel

• the number of different paths can be large 
when considering nested control flow 
statements
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The control diverges is problem only among threads 
within a warp.

The control divergence among warps is perfectly fine 
as long as all threads within a warp execute the same 

instruction.
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__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];
}

Divergence can arise when branch or loop condition is a function of thread indices
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CUDA Memories
Hardware View
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CUDA Memories
Hardware View

Memory hierarchy in Ampere generation (GA100)
• Registers

• 256 kB per SM 
• Storage local to each threads

• Shared memory / L1 (192KB total)
• configurable up to 164KB for SM;

• remainder for L1 Cache
• low latency: ~22 cycles (SM), 34 cycles (L1d)
• high bandwidth: ~18 TB/s

• Read-only cache
• Up to 128 kB per SM

• L2 - 40 MB
• latency: ~ 200 or 350 cycles  
• BW: ~ 7000 GB/s

• Global memory – 40 or 80 GB HBM2
• BW ~ 1500 GB/s
• High latency (400-800 cycles)
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SM (Streaming Multiprocesor)

Shared 
memory

Registers

Cache (L2)

Global Memory

L1
cache

Read 
only

SM

…
Regs.

Peter Van Sandt, Citadel, Zhe Jia, Citadel: Dissecting the Ampere GPU Architecture through Microbenchmarking
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/
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CUDA Memories
Caches

Why do GPU have caches?
In general, not for cache blocking 
• 100s ~ 1000s of threads running per SM
• tens of thousands of threads sharing the L2 cache
• L1, L2 are small per thread. 
• Example: at 2048 threads/SM, with 80 SMs: 

• 64 bytes L1, 
• 38 Bytes L2 per thread

Shared Memory is usually better option to cache data explicitly: 
• user managed, no evictions out of your control.

Caches on GPUs are useful for: 
• “Smoothing” irregular, unaligned access patterns
• Caching common data accessed by many threads
• Faster register spills, local memory
• Fast atomics
• Codes that don’t use shared memory (naïve code, OpenACC, …)
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Source: NVIDIA https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
Microbenchmarks: https://github.com/passlab/CUDAMicroBench , DOI Bookmark: 10.1109/IPDPSW52791.2021.00068
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CUDA Memories
Hardware View
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Predelat 

Constant memory

• Read-only variables or arrays of global scope
• Qualified with __constant__ keyword
• Capacity 64 KiB
• Cached in 8 KiB constant (read-only) cache
• Very fast if all threads within a warp read the same address

• If the address is cached, throughput of constant cache
• If not cached, throughput of device memory

• If different threads read different addresses, the accesses 
are serialized

• Example use: stencil coefficients

SM (Streaming Multiprocesor)

Shared 
memory

Registers

Cache (L2)

Global Memory

L1
cache

Read 
only

SM

…
Regs.



This project has been funded with support from the European Commission.
This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which 
may be made of the information contained therein.

Global Memory



CUDA Memories
Architecture of DRAM (Global) Memory

DRAM Core Array Organization
• each DRAM core array has about 16M bits
• each bit is stored in a tiny capacitor made 

of one transistor

129Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Memory Cell
Core Array

Row
Decoder

Sense Amps

Column Latches

Mux

Row
Address

Column
Address

Off-chip Data

Wide bus

Narrow bus

de
co

de

0 1 1

Sense amps

Mux

Example of a very small (8x2-bit) DRAM Core Array
• each bit is stored in a tiny capacitor made of one transistor

Reading from a cell in 
the core array is a 
very slow process
• DDR3/GDDR4: Core 

speed = ⅛ interface 
speed

• likely to be worse in 
the future

de
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A very small 
capacitance that 
stores a data bit

about 1000 cells connected to each vertical line A cell in the core array 

Off-chip Data
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CUDA Memories
Architecture of DRAM (Global) Memory

DRAM Bursting
• For DDR{2,3,…} SDRAM the cores are clocked at 1/N speed of the interface
• DRAM Burst means to load (N × interface width) of DRAM bits from the same row at once to an internal buffer, then 

transfer in N steps at interface speed (i.e. DDR3/GDDR4: buffer width = 8X interface width)

time

Address bits 
to decoder

Core Array 
access delay

bits
on interface

Non-burst timing

Burst timing with single bank

• Modern DRAM systems are designed to always 
be accessed in burst mode. 

• Burst bytes are transferred to the processor but 
discarded when accesses are not to sequential 
locations.

Multi-Bank burst timing, reduced dead time 

Bank 0 Bank 1 Bank 3

…

Multi-Bank
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Bank 0
Bank 1
Bank 2
Bank 3
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CUDA Memories
Global Memory Efficient Access

Memory Coalescing
• memory coalescing is important for effectively utilizing memory bandwidth in CUDA

• its origin in DRAM burst
• for good performance CUDA memory access is coalesced

DRAM Burst – A System View
• Each address space is partitioned into burst sections 

• Whenever a location is accessed, all other locations in the same section are also delivered to the processor 
• Basic example:

• a 16-byte address space, 4-byte burst sections
• In practice, we have at least 4GB address space, burst section sizes of 128-bytes or more

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

https://www.nvidia.com/en-us/training/teaching-kits/
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• __device__ is optional when 
used with __shared__, or 
__constant__

• Automatic variables reside in a 
register

• Except per-thread arrays
that reside in global 
memory

132

(Device) Grid
Host

Host 
memory

Block (0,0,0)

Thread 0,0,0
Registers

Shared memory/
L1 cache

Thread 0,0,1
Registers

Block (0,0,1)

Thread 0,0,0
Registers

Shared memory/
L1 cache

Thread 0,0,1
Registers

Cache (L2)

Constant Memory

CPU 
with

cache
Global Memory

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__ int SharedVar; shared block block

__device__       int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application
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Memory Coalescing
• when all threads of a warp execute a load instruction, if 

all accessed locations fall into the same burst section, 
only one DRAM request will be made and the access is 
fully coalesced.

How to judge if an access is coalesced?
• Accesses in a warp are to consecutive locations if the 

index in an array access is in the form of
• A[(expression with terms independent of threadIdx.x) + 

threadIdx.x];

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

T0 T1 T2 T3
Coalesced Loads

T0 T1 T2 T3
Coalesced Loads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section 

T0 T1 T2 T3
Un-coalesced Loads

T0 T1 T2 T3
Un-coalesced Loads

210 3 54 6 7 98 10 11 1312 14 15

Burst section Burst section Burst section Burst section 

Un-coalesced Accesses
• When the accessed locations spread across burst 

section boundaries:
• Coalescing fails
• Multiple DRAM requests are made
• The access is not fully coalesced.

• Some of the bytes accessed and transferred are 
not used by the threads

https://www.nvidia.com/en-us/training/teaching-kits/
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Memory access granularity
• 32 Bytes – 1 sector 

• for Maxwell and Pascal
• Volta architecture 

• 64 Bytes
• 2 sectors is default – second sector is 

prefetched 
• Ampere architecture

• granularity can be set to 
• 32, 64 and 128 Bytes 

Cache line size
• 128 Bytes – made of 4 sectors 

Cache management granularity
• 1 cache line

Courtesy © 2012, NVIDIA

+96 +128+32 +64+0

Sector 0 Sector 3Sector 2Sector 1

128-Byte alignment

128 Byte cache line

Cache lines and Sectors
• Moving data between L1, L2 and DRAM

cudaDeviceSetLimit(cudaLimitMaxL2FetchGranularity, 32)

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
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Scenario 1:
• Warp requests 32 aligned, 

consecutive 4-byte words
Addresses fall within 4 sectors
• Warp needs 128 bytes
• 128 bytes move across the bus
• Bus utilization: 100%

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
sector

Courtesy © 2012, NVIDIA

Scenario 2:
• Warp requests 32 aligned, 

permuted 4-byte words
Addresses fall within 4 sectors
• Warp needs 128 bytes
• 128 bytes move across the bus
• Bus utilization: 100%

addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
sector

...
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Scenario 3:
• All threads in a warp request the 

same 4-byte word
Addresses fall within 4 sectors
• Warp needs 4 bytes
• 32 bytes move across the bus
• Bus utilization: 12.5%

addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
sector

Courtesy © 2012, NVIDIA

Scenario 4:
• Warp requests 32 scattered 4-byte 

words
Addresses fall within 4 sectors
• Warp needs 128 bytes
• N*32 bytes move across the bus
• Bus utilization: 128 / (N*32)

addresses from a warp

...

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
sector

...

https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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Scenario 5:
• Warp requests 32 unaligned, 

consecutive 4-byte words
Addresses fall within 5 sectors
• Warp needs 128 bytes
• 160 bytes move across the bus
• Bus utilization: 80%

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
sector

Courtesy © 2012, NVIDIA

Scenario 6:
• 2 Warps request 32 unaligned,

consecutive 4-byte words
Addresses fall within 9 sectors
• 2 Warps need 256 bytes
• 288 or 320 bytes move across the 

bus (depends on presence of data 
in cache)

• Bus utilization: 88% or 80%

addresses from a warp 1

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
sector

...
addresses from a warp 2

...
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2D C Array in Linear Memory Space
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M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

H
EI

G
H

T

i is the loop counter in the inner product loop of the kernel code
Col = blockIdx.x*blockDim.x + threadIdx.x

Two Access Patterns of Basic Matrix Multiplication 

A is m × n, 
B is n × k 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

https://www.nvidia.com/en-us/training/teaching-kits/
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M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

H
EI

G
H

T

i is the loop counter in the inner product loop of the kernel code
Col = blockIdx.x*blockDim.x + threadIdx.x

Two Access Patterns of Basic Matrix Multiplication 

N
T0 T1 T2 T3
Load iteration 0

T0 T1 T2 T3
Load iteration 1

Access 
direction in 
kernel code

B0,2

B1,1

B0,1B0,0

B1,0

B0,3

B1,2 B1,3

B2,1B2,0 B2,2 B2,3

B3,1B3,0 B3,2 B3,3

B0,2B0,1B0,0 B0,3 B1,1B1,0 B1,2 B1,3 B2,1B2,0 B2,2 B2,3 B3,1B3,0 B3,2 B3,3

Matrix B accesses are coalesced

A is m × n, 
B is n × k 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

https://www.nvidia.com/en-us/training/teaching-kits/
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M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

H
EI

G
H

T

i is the loop counter in the inner product loop of the kernel code
Col = blockIdx.x*blockDim.x + threadIdx.x

Two Access Patterns of Basic Matrix Multiplication 

N
T0 T1 T2 T3
Load iteration 0

T0 T1 T2 T3
Load iteration 1

Access 
direction in 
kernel code

B0,2

B1,1

B0,1B0,0

B1,0

B0,3

B1,2 B1,3

B2,1B2,0 B2,2 B2,3

B3,1B3,0 B3,2 B3,3

B0,2B0,1B0,0 B0,3 B1,1B1,0 B1,2 B1,3 B2,1B2,0 B2,2 B2,3 B3,1B3,0 B3,2 B3,3

T0 T1 T2 T3Load iteration 0

T0 T1 T2 T3Load iteration 1

Access 
direction in 
kernel code

A0,2

A1,1

A0,1A0,0

A1,0

A0,3

A1,2 A1,3

A2,1A2,0 A2,2 A2,3

A3,1A3,0 A3,2 A3,3

A0,2A0,1A0,0 A0,3 A1,1A1,0 A1,2 A1,3 A2,1A2,0 A2,2 A2,3 A3,1A3,0 A3,2 A3,3

Matrix B accesses are coalesced Matrix A Accesses are Not Coalesced

A is m × n, 
B is n × k 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

https://www.nvidia.com/en-us/training/teaching-kits/
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Hands-on
Matrix sum



142https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

Hands-on
Matrix sum

. . .

. . .
• 05_matrix_sum/<lang>/Task/matrix_sum.<ext>
• Sum of values in a matrix

• In each row (matrix_sum_each_row kernel)
• In each column (matrix_sum_each_col kernel)

• Complete the TODO task
• Implement the second kernel

• Think about the memory access pattern
• Do not think about each thread individually, think about the 

threadblock (or rather warp) as a whole
• Beware C vs Fortran conventions for storing a matrix in memory

• Row-major vs column-major order

col_sums

row_sums

Correct output (C++):

Summation time in each row:     19.320 ms
Summation time in each column:   7.801 ms
Using coalesced memory accesses was  2.48 times faster



This project has been funded with support from the European Commission.
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may be made of the information contained therein.

Shared Memory
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Shared Memory in CUDA 

Special type of memory whose contents are explicitly 
defined and used only in the kernel source code
• one independent chunk in each SM
• accessed at much higher speed (in both latency 

and throughput) than global memory
• scope of access and sharing – all threads in a 

block
• lifetime – thread block, contents will disappear after 

the corresponding thread finishes terminates 
execution

• accessed by memory load/store instructions
• a form of scratchpad memory in computer architecture

144

(Device) Grid

Block (0,0,0)

Thread 0,0,0
Registers

Shared memory/
L1 cache

Thread 0,0,1
Registers

Block (0,0,1)

Thread 0,0,0
Registers

Shared memory/
L1 cache

Thread 0,0,1
Registers

Cache (L2)

https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

Global Memory
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Performance benefits compared to DRAM: 
• 20-40x lower latency 
• ~15x higher bandwidth 
• accessed at 4-byte granularity 
• Global Memory granularity is 32 Bytes

Ampere generation shared memory + L1 cache
• GA102 – 128 KB (used by A40 - mainly for graphics)

• Configurable up to 100 KB
• GA100 – 192 KB (used by A100 - HPC)

• Configurable up to 164 KB

Organization 
• organized in 32 banks, each 4 Bytes wide 

• bandwidth: 4 Bytes per bank per clock per SM
• 128 Bytes per clk per SM

• successive 4-byte words go to successive banks

145

(Device) Grid

Block (0,0,0)

Thread 0,0,0
Registers

Shared memory/
L1 cache

Thread 0,0,1
Registers

Block (0,0,1)

Thread 0,0,0
Registers

Shared memory/
L1 cache

Thread 0,0,1
Registers

Cache (L2)

https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

Global Memory

Bank index computation examples: 
• (4B word index) % 32 
• ((1B word index) / 4 ) % 32 
• 8B word spans two successive banks



CUDA Memories
Shared Memory in CUDA 

Logical View of Shared Memory banks 
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0 2 3 4 5 6 7 8 9 10 11 12 13 14 30 31
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 120 124 128

32 33 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31
128 132 136 140 144 148 152 156 248 252 256

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31
256 260 264 270 276 380 384

Byte addresses:

Bank
0

Bank
1

Bank
2

Bank
3

Bank
30

Bank
31

...

Banks Conflicts
• A bank conflict occurs when, inside a warp: 

• 2 or more threads access within different 4B words in the same bank 
• Think: 2 or more threads access different “rows” in the same bank 

• N-way bank conflict: N threads in a warp conflict
• Increases latency
• Worst case: 32-way conflict → 31 replays
• Each replay adds a few cycles of latency

• There is no bank conflict if:
• Several threads access the same 4-byte word
• Several threads access different bytes of the same 4-byte word

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

1
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No Bank Conflict

147Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9 T_10 T_11 T_12 T_13 T_14 T_30 T_31

0 2 3 4 5 6 7 8 9 10 11 12 13 14 30 31
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 120 124 128

32 33 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31
128 132 136 140 144 148 152 156 248 252 256

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31
256 260 264 270 276 380 384

Byte addresses:

Bank
0

Bank
1

Bank
2

Bank
3

Bank
30

Bank
31

...

1
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No Bank Conflict
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30 31
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 120 124 128

32 33 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31
128 132 136 140 144 148 152 156 248 252 256

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31
256 260 264 270 276 380 384

Byte addresses:

Bank
0

Bank
1

Bank
2

Bank
3

Bank
30

Bank
31

...

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9 T_10 T_11 T_12 T_13 T_14 T_30 T_31

0 2 3 4 5 6 7 8 9 10 11 12 13 141
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30 31
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 120 124 128

32 33 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31
128 132 136 140 144 148 152 156 248 252 256

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31
256 260 264 270 276 380 384

Byte addresses:
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0

Bank
1
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2
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...

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9 T_10 T_11 T_12 T_13 T_14 T_30 T_31
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No Bank Conflict
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32 33 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31
128 132 136 140 144 148 152 156 248 252 256

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31
256 260 264 270 276 380 384

Byte addresses:
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0
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31

...

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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2-way Bank Conflict
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2-way Bank Conflict
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30 31
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0 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31
256 260 264 270 276 380 384

Byte addresses:
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1
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31
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Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf

T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_8 T_9 T_10 T_11 T_12 T_13 T_14 T_30 T_31
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3-way Bank Conflict
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Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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8B words, No Conflicts

154Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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Phase 1

Phase 2

8B  words  are  accessed  
in  2  phases: 
• Phase 1: Process  

addresses  of  the  
first  16  threads in  
a  warp 

• Phase 2: Process  
addresses  of  the  
second  16  threads
in  a  warp
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8B words, 2-way Conflicts

155Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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Phase 1

8B  words  are  accessed  
in  2  phases: 
• Phase 1: Process  

addresses  of  the  
first  16  threads in  
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• Phase 2: Process  
addresses  of  the  
second  16  threads
in  a  warp
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T_0 T_1 T_2 T_3 T_4 T_5 T_6 T_7 T_15
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Memory and Data 
Locality:

Tiling Technique
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(Device) Grid

Block (0,0,0)

Thread 0,0,0
Registers

Shared memory/
L1 cache

Thread 0,0,1
Registers

Block (0,0,1)

Thread 0,0,0
Registers

Shared memory/
L1 cache

Thread 0,0,1
Registers

Cache (L2)

https://towardsdatascience.com/how-the-hell-are-gpus-so-fast-a-e770d74a0bf

Global Memory

void CUDA_Kernel(unsigned char * in, 
unsigned char * out, int w, int h) 
{

__shared__ float 
ds_in[TILE_WIDTH][TILE_WIDTH];

…
}

Declaration:
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2D C Array in Linear Memory Space
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M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

linearized order in increasing address

A B

WIDTH

Thread 1
Thread 2

A[Row*n+i] B[i*k+Col]

H
EI

G
H

T

i is the loop counter in the inner product loop of the kernel code
Col = blockIdx.x*blockDim.x + threadIdx.x

Two Access Patterns of Basic Matrix Multiplication 

N
T0 T1 T2 T3
Load iteration 0

T0 T1 T2 T3
Load iteration 1

Access 
direction in 
kernel code

B0,2

B1,1

B0,1B0,0

B1,0

B0,3

B1,2 B1,3

B2,1B2,0 B2,2 B2,3

B3,1B3,0 B3,2 B3,3

B0,2B0,1B0,0 B0,3 B1,1B1,0 B1,2 B1,3 B2,1B2,0 B2,2 B2,3 B3,1B3,0 B3,2 B3,3

T0 T1 T2 T3Load iteration 0

T0 T1 T2 T3Load iteration 1

Access 
direction in 
kernel code

A0,2

A1,1

A0,1A0,0

A1,0

A0,3

A1,2 A1,3

A2,1A2,0 A2,2 A2,3

A3,1A3,0 A3,2 A3,3

A0,2A0,1A0,0 A0,3 A1,1A1,0 A1,2 A1,3 A2,1A2,0 A2,2 A2,3 A3,1A3,0 A3,2 A3,3

Matrix B accesses are coalesced Matrix A Accesses are Not Coalesced

A is m × n, 
B is n × k 
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Thread 0 Thread 1

24 reads from Global Memory
Global Memory
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Thread 0 Thread 1

4 reads from Global Memory

8 reads from Shared Memory

Global Memory

Shared Memory
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Thread 0 Thread 1

4 reads from Global Memory

8 reads from Shared Memory

Global Memory

Shared Memory
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Thread 0 Thread 1

4 reads from Global Memory

8 reads from Shared Memory

Global Memory

Shared Memory
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Thread 0 Thread 1

Global Memory

Shared Memory

Tiling needs synchronization

Thread 1

Thread 2

Thread 1

Thread 2
Time

Time

Time

Time

Memory

Good: when threads have similar access timing

Bad: when threads have very different timing

Sync
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Thread 0 Thread 1

Global Memory

Shared Memory

Tiling needs synchronization

Sync
Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread N-3
Thread N-2
Thread N-1

Time 
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Thread 0
Work on 

data

Thread 1
Work on 

data

Global Memory

Shared Memory

Tiling needs synchronization

Sync

Tiling Techniques step by step
• Identify a tile of global memory contents that are 

accessed by multiple threads

• Load the tile from global memory into on-chip 
memory

• Use barrier synchronization to make sure that all 
threads are ready to start the phase

• Have the multiple threads to access their data from 
the on-chip memory

• Use barrier synchronization to make sure that all 
threads have completed the current phase

• Move on to the next tile

Sync
Global Memory
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Thread 0
Work on 

data

Thread 1
Work on 

data

Global Memory

Shared Memory

Tiling needs synchronization

Sync

Barrier Synchronization
• CUDA call to synchronize all threads in a block

__syncthreads()

• all threads in the same block must reach the 
__syncthreads() before any of the them can 
move on

• best used to coordinate the phased execution of a 
tiled algorithms

• to ensure that all elements of a tile are loaded 
at the beginning of a phase

• to ensure that all elements of a tile are 
consumed at the end of a phase

Sync
Global Memory
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M

N

P

WIDTHWIDTH

W
ID

TH
W

ID
TH

Row

Col

WIDTH

for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k] * N[k*Width+Col];

}

Global Memory is not fast enough !!!

Example: Matrix multiplication from Global Memory
• all threads access global memory for their input matrix elements

• two memory accesses (4 bytes) per two floating-point 
operations (multiplication and addition) 

• algorithm needs 4B for every FLOP

• Assume a GPU with
• peak floating-point rate 1,600 GFLOP/second

• 4B*1,600 = 6,400 GB/s required to achieve peak 
FLOPS rating

• 600 GB/s DRAM bandwidth
• the 600 GB/s memory bandwidth limits the execution 

at 150 GFLOPS

• This limits the execution rate to 9.3% (150/1600) of the peak 
floating-point execution rate of the device!

• Need to drastically cut down memory accesses to get close 
to the1,600 GFLOPS

Thread

Thread

Thread

Thread 
block
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A Basic Matrix Multiplication

M

N

P

BLOCK_WIDTH

WIDTH

WIDTH

B
LO
C
K
_W

ID
TH

W
ID

TH
W

ID
TH

Row

Col

WIDTH

__global__ void MatrixMulKernel(float* M, float* N,
float* P, int Width) 

{
// Calculate the row index of the P element and M 
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the 
// block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}
}

Thread

Thread

Thread 
block

Solution – use tiling to reuse data in Shared Memory 
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A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N,
float* P, int Width) 

{
// Calculate the row index of the P element and M 
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the 
// block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}
}

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

Block(0,0) Block(0,1)

Block(1,1)Block(1,0)

BLOCK_WIDTH = 2

Thread(0,0)

Thread(1,0)

Thread(0,1)

Thread(1,1)

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA Memories
Tiled Matrix Multiplication

172Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N,
float* P, int Width) 

{
// Calculate the row index of the P element and M 
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the 
// block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}
}

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P1,0 P1,1

P0,1P0,0
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A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N,
float* P, int Width) 

{
// Calculate the row index of the P element and M 
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the 
// block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];

}
P[Row*Width+Col] = Pvalue;

}
}

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P1,0 P1,1

P0,1P0,0

https://www.nvidia.com/en-us/training/teaching-kits/


P

CUDA Memories
Tiled Matrix Multiplication

174Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

M

N

WIDTH

WIDTH

W
ID

TH
W

ID
TH

Row

Col

WIDTH

Data access pattern
• each thread - a row of M and a column of N
• each thread block – a strip of M and a strip of N

Thread

Thread
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N

WIDTH

WIDTH

W
ID

TH
W

ID
TH

Col

WIDTH

Row
…

…

Data access pattern
• each thread - a row of M and a column of N
• each thread block – a strip of M and a strip of N

Tiled Matrix Multiplication
• break up the execution of each thread into phases 
• so that the data accesses by the thread block in each 

phase are focused on one tile of M and one tile of N
• the tile is of BLOCK_SIZE elements in each dimension
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Data access pattern

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

N1,0 N1,1

N0,1N0,0

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

Phase 0 Load for Block (0,0)

Shared 
Memory

Phase 0

Thread 
(0,0)

M0,0
↓
MS0,0

N0,0
↓
NS0,0

PValue0,0 += 
MS0,0*NS0,0+MS0,1*NS1,0

Thread 
(0,1)

M0,1
↓
MS0,1

N0,1
↓
NS0,1

PValue0,1 += 
MS0,0*NS0,1+MS0,1*NS1,1

Thread 
(1,0)

M1,0
↓
MS1,0

N1,0
↓
NS1,0

PValue1,0 += 
MS1,0*NS0,0+MS1,1*NS1,0

Thread 
(1,1)

M1,1
↓
MS1,1

N1,1
↓
NS1,1

PValue1,1 += 
MS1,0*NS0,1+MS1,1*NS1,1
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M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

Phase 0 Use for Block (0,0) 
(iteration 0)

Data access pattern

Phase 0

Thread 
(0,0)

M0,0
↓
MS0,0

N0,0
↓
NS0,0

PValue0,0 += 
MS0,0*NS0,0+MS0,1*NS1,0

Thread 
(0,1)

M0,1
↓
MS0,1

N0,1
↓
NS0,1

PValue0,1 += 
MS0,0*NS0,1+MS0,1*NS1,1

Thread 
(1,0)

M1,0
↓
MS1,0

N1,0
↓
NS1,0

PValue1,0 += 
MS1,0*NS0,0+MS1,1*NS1,0

Thread 
(1,1)

M1,1
↓
MS1,1

N1,1
↓
NS1,1

PValue1,1 += 
MS1,0*NS0,1+MS1,1*NS1,1
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M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

Phase 0 Use for Block (0,0) 
(iteration 1)

Data access pattern

Phase 0

Thread 
(0,0)

M0,0
↓
MS0,0

N0,0
↓
NS0,0

PValue0,0 += 
MS0,0*NS0,0+MS0,1*NS1,0

Thread 
(0,1)

M0,1
↓
MS0,1

N0,1
↓
NS0,1

PValue0,1 += 
MS0,0*NS0,1+MS0,1*NS1,1

Thread 
(1,0)

M1,0
↓
MS1,0

N1,0
↓
NS1,0

PValue1,0 += 
MS1,0*NS0,0+MS1,1*NS1,0

Thread 
(1,1)

M1,1
↓
MS1,1

N1,1
↓
NS1,1

PValue1,1 += 
MS1,0*NS0,1+MS1,1*NS1,1
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N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N2,0 N2,1

N3,0 N3,1

M0,2 M0,3

M1,3M1,2

Phase 1 Load for Block (0,0)
Data access pattern

Phase 1

Thread 
(0,0)

M0,2
↓
MS0,0

N2,0
↓
NS0,0

Thread 
(0,1)

M0,3
↓
MS0,1

N2,1
↓
NS0,1

Thread 
(1,0)

M1,2
↓
MS1,0

N3,0
↓
NS1,0

Thread 
(1,1)

M1,3
↓
MS1,1

N3,1
↓
NS1,1
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N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N2,0 N2,1

N3,0 N3,1

M0,2 M0,3

M1,3M1,2

Phase 1 Use for Block (0,0) 
(iteration 0)

Data access pattern

Phase 1

Thread 
(0,0)

M0,2
↓
MS0,0

N2,0
↓
NS0,0

PValue0,0 += 
MS0,0*NS0,0+MS0,1*NS1,0

Thread 
(0,1)

M0,3
↓
MS0,1

N2,1
↓
NS0,1

PValue0,1 += 
MS0,0*NS0,1+MS0,1*NS1,1

Thread 
(1,0)

M1,2
↓
MS1,0

N3,0
↓
NS1,0

PValue1,0 += 
MS1,0*NS0,0+MS1,1*NS1,0

Thread 
(1,1)

M1,3
↓
MS1,1

N3,1
↓
NS1,1

PValue1,1 += 
MS1,0*NS0,1+MS1,1*NS1,1

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA Memories
Tiled Matrix Multiplication

181Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N2,0 N2,1

N3,0 N3,1

M0,2 M0,3

M1,3M1,2

Phase 1 Use for Block (0,0) 
(iteration 1)

Data access pattern

Phase 1

Thread 
(0,0)

M0,2
↓
MS0,0

N2,0
↓
NS0,0

PValue0,0 += 
MS0,0*NS0,0+MS0,1*NS1,0

Thread 
(0,1)

M0,3
↓
MS0,1

N2,1
↓
NS0,1

PValue0,1 += 
MS0,0*NS0,1+MS0,1*NS1,1

Thread 
(1,0)

M1,2
↓
MS1,0

N3,0
↓
NS1,0

PValue1,0 += 
MS1,0*NS0,0+MS1,1*NS1,0

Thread 
(1,1)

M1,3
↓
MS1,1

N3,1
↓
NS1,1

PValue1,1 += 
MS1,0*NS0,1+MS1,1*NS1,1
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Shared memory allows each value to be accessed by multiple threads. 

Phase 1

Thread 
(0,0)

M0,2
↓
MS0,0

N2,0
↓
NS0,0

PValue0,0 += 
MS0,0*NS0,0+MS0,1*NS1,0

Thread 
(0,1)

M0,3
↓
MS0,1

N2,1
↓
NS0,1

PValue0,1 += 
MS0,0*NS0,1+MS0,1*NS1,1

Thread 
(1,0)

M1,2
↓
MS1,0

N3,0
↓
NS1,0

PValue1,0 += 
MS1,0*NS0,0+MS1,1*NS1,0

Thread 
(1,1)

M1,3
↓
MS1,1

N3,1
↓
NS1,1

PValue1,1 += 
MS1,0*NS0,1+MS1,1*NS1,1

Phase 0

Thread 
(0,0)

M0,0
↓
MS0,0

N0,0
↓
NS0,0

PValue0,0 += 
MS0,0*NS0,0+MS0,1*NS1,0

Thread 
(0,1)

M0,1
↓
MS0,1

N0,1
↓
NS0,1

PValue0,1 += 
MS0,0*NS0,1+MS0,1*NS1,1

Thread 
(1,0)

M1,0
↓
MS1,0

N1,0
↓
NS1,0

PValue1,0 += 
MS1,0*NS0,0+MS1,1*NS1,0

Thread 
(1,1)

M1,1
↓
MS1,1

N1,1
↓
NS1,1

PValue1,1 += 
MS1,0*NS0,1+MS1,1*NS1,1
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P

WIDTH

WIDTH

W
ID

TH
W

ID
TH

Col

WIDTH

Row
…

…

Loading Input Tile 0 of M and N (Phase 0)
• each thread loads an M element and an N element at 

the same relative position as its P element

2D indexing for accessing Tile 0:

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;

M [Row] [tx]
N [ty]  [Col]
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WIDTH

WIDTH

W
ID

TH
W

ID
TH

Col

WIDTH

Row
…

…

Loading Input Tile 1 of M and N (Phase 1)
• each thread loads an M element and an N element at 

the same relative position as its P element

2D indexing for accessing Tile 1:

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;

M [Row]               [1*TILE_WIDTH + tx]
N [1*TILE*WIDTH + ty] [Col]
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WIDTH

WIDTH

W
ID

TH
W

ID
TH

Col

WIDTH

Row
…

…

Loading Input Tile p of M and N (Phase 1)
• each thread loads an M element and an N element at 

the same relative position as its P element

2D indexing for accessing Tile p:

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;

M [Row]               [p*TILE_WIDTH + tx]
N [p*TILE*WIDTH + ty] [Col]
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WIDTH

WIDTH

W
ID

TH
W

ID
TH

Col

WIDTH

Row
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…

Loading Input Tile p of M and N (Phase 1)
• each thread loads an M element and an N element at 

the same relative position as its P element

2D indexing for accessing Tile p:

1D indexing for accessing Tile p:

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;

M [Row]               [p*TILE_WIDTH + tx]
N [p*TILE*WIDTH + ty] [Col]

M [Row*Width + p*TILE_WIDTH + tx]
N [(p*TILE_WIDTH+ty)*Width + Col]

https://www.nvidia.com/en-us/training/teaching-kits/


__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];  
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {
// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(p*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)
Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();
} 
P[Row*Width+Col] = Pvalue;

}

CUDA Memories
Tiled Matrix Multiplication Kernel
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Matrix Multiplication kernel 
• two additional declaration of SM 

array ds_M a ds_N
• Tiles of M and N
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__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];  
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {
// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(p*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)
Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();
} 
P[Row*Width+Col] = Pvalue;

}

CUDA Memories
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Matrix Multiplication kernel 
• loop defines the phases of the 

mat. mult. kernel 
• each iteration corresponds 

to a phase 
• P variable – indicates the 

number of the current 
phase 

• each thread loads one element 
of M and N

• these elements are moved to 
SM arrays ds_M and ds_N

• _syncthreads() is needed 
because threads can execute in 
different timings 

https://www.nvidia.com/en-us/training/teaching-kits/


CUDA Memories
Tiled Matrix Multiplication Kernel

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Matrix Multiplication kernel 
• selected loop performs the 

execution of the inner product in 
a current phase based on the 
content of the SM 

• _syncthreads()
• makes sure all threads 

finished the calculation 
• and no threads need 

content of SM anymore 
• after the sync, we can 

rewrite the content of the 
SM with new data for next 
phase 

• Finally, each thread writes its 
output value in the P matrix 

__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];  
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {
// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(p*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)
Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();
} 
P[Row*Width+Col] = Pvalue;

}

https://www.nvidia.com/en-us/training/teaching-kits/
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Performance considerations
• Each thread block should have many threads

• TILE_WIDTH of 16 gives 16*16 = 256 threads
• TILE_WIDTH of 32 gives 32*32 = 1024 threads

• for TILE_WIDTH = 16, 
• in each phase, each block performs 

• 2*256 = 512 float loads from global memory for 
• 256 * (2*16) = 8,192 mul/add operations

• 16 floating-point operations for each memory load

• for TILE_WIDTH = 32, 
• in each phase, each block performs 

• 2*1024 = 2048 float loads from global memory for 
• 1024 * (2*32) = 65,536 mul/add operations

• 32 floating-point operation for each memory load

https://www.nvidia.com/en-us/training/teaching-kits/
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Performance considerations
• Each thread block should have many threads

• TILE_WIDTH of 16 gives 16*16 = 256 threads
• TILE_WIDTH of 32 gives 32*32 = 1024 threads

• for TILE_WIDTH = 16, 
• in each phase, each block performs 

• 2*256 = 512 float loads from global memory for 
• 256 * (2*16) = 8,192 mul/add operations

• 16 floating-point operations for each memory load

• for TILE_WIDTH = 32, 
• in each phase, each block performs 

• 2*1024 = 2048 float loads from global memory for 
• 1024 * (2*32) = 65,536 mul/add operations

• 32 floating-point operation for each memory load

Shared Memory impact
• For example, let’s have an SM with 16KB shared memory

• Shared memory size is implementation dependent!
• GA102 – up to 100kB per SM
• GA100 – up to 164kB per SM

• For TILE_WIDTH = 16, 
• each thread block uses 2*16*16*4B = 2KB of shared 

memory
• for 16KB shared memory per SM, one SM

• can have up to 8 thread blocks executing
• this allows up to 8*512 = 4,096 pending loads

• 2 per thread, 256 threads per block
• For TILE_WIDTH = 32 

• each thread block uses 2*32*32*4B = 8KB of shared 
memory

• one SM can have 2 thread blocks active at the same 
time 

• one have to check maximum number of threads per 
block (1024, 1536 or 2048) architecture dependent
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Data access pattern

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

N1,0 N1,1

N0,1N0,0

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

Phase 0 Load for Block (0,0)

Shared 
Memory
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M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

Phase 0 Use for Block (0,0) 
(iteration 0)

Data access pattern
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M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

Phase 0 Use for Block (0,0) 
(iteration 1)

Data access pattern
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N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N2,0 N2,1

N3,0 N3,1

M0,2 M0,3

M1,3M1,2

Phase 1 Load for Block (0,0)
Basic kernel limitations 
• the tiled matrix multiplication kernel can handle only 

• square matrices 
• dimensions are multiples of the TILE_WIDTH

• real applications need to handle arbitrary sized matrices

These threads need special 
treatment in loading M and N tile
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N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N2,0 N2,1

0 0

M0,2 0

0M1,2

Phase 1 Load for Block (0,0)
Solving problem during loading data into tile
• when a thread is to load an input element

• test if it is in the valid index range
• if valid, proceed to load
• else, do not load, and write a 0 to SM

• Rationale: a 0 value will ensure that that the multiply-
add step does not affect the final value of the output 
element

• the condition tested for loading input elements is 
different from the test for calculating output P element

• a thread that does not calculate valid P element can still 
participate in loading input tile elements
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N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N2,0 N2,1

0 0

M0,2 0

0M1,2

Phase 1 Use for Block (0,0) 
(iteration 0)

Tile processing 
• if SM buffers are loaded correctly, the Tile processing 

remains unaffected 
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N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

P0,2 P0,3

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

P1,0 P1,1

P0,1P0,0M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N2,0 N2,1

0 0

M0,2 0

0M1,2

Phase 1 Use for Block (0,0) 
(iteration 1)

Tile processing 
• if SM buffers are loaded correctly, the Tile processing 

remains unaffected 
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WIDTH

WIDTH

Row
…

Loading Input Tile p of M 
• each thread loads an M element and an N element at 
• the same relative position as its P element

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;

2D indexing for accessing Tile p:
M [Row][p*TILE_WIDTH + tx]

1D indexing for accessing Tile p:

M [Row*Width + p*TILE_WIDTH + tx]

Boundary condition 
if(Row < Width) && (p*TILE_WIDTH+tx < Width)
• true: load M element 
• else: use 0
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Loading Input Tile p of N 
• each thread loads an M element and an N element at 
• the same relative position as its P element

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;

2D indexing for accessing Tile p:
N [p*TILE*WIDTH + ty][Col]

1D indexing for accessing Tile p:

N [(p*TILE_WIDTH+ty)*Width + Col]

Boundary condition 
if(p*TILE_WIDTH+ty < Width) && (Col< Width)
• true: load M element 
• else: use 0

N

W
ID

TH

Col

…
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__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];  
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {
// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)
Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();
} 
P[Row*Width+Col] = Pvalue;

}
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Loading Elements to Shared 
Memory
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// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {
// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
ds_N[ty][tx] = N[(p * TILE_WIDTH + ty) * Width + Col];
__syncthreads();

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < (Width-1)/TILE_WIDTH + 1; ++p) {
// Collaborative loading of M and N tiles into shared memory
if(Row < Width && p * TILE_WIDTH+tx < Width) {
ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];

} else {
ds_M[ty][tx] = 0.0;

}
if (p*TILE_WIDTH+ty < Width && Col < Width) {
ds_N[ty][tx] = N[(p * TILE_WIDTH + ty) * Width + Col];

} else {
ds_N[ty][tx] = 0.0;

}
__syncthreads();

CUDA Memories
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Loading Elements to Shared 
Memory 
• with boundary check
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__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];  
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {
// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)
Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();
} 
P[Row*Width+Col] = Pvalue;

}

CUDA Memories
Tiled Matrix Multiplication Kernel
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Inner Product
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for (int i = 0; i < TILE_WIDTH; ++i) {
Pvalue += ds_M[ty][i] * ds_N[i][tx];

}

__synchthreads();
} 
P[Row*Width+Col] = Pvalue;

} /* end of kernel */

if(Row < Width && Col < Width) {
for (int i = 0; i < TILE_WIDTH; ++i) {
Pvalue += ds_M[ty][i] * ds_N[i][tx];

}
__syncthreads();

} 
if (Row < Width && Col < Width) 
P[Row*Width + Col] = Pvalue;

} /* end of kernel */

CUDA Memories
Tiled Matrix Multiplication Kernel
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Inner Product – Before and 
After
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• 06_matrix_multiplication/<lang>/Task/matrix_multiplication.<ext>

N

M P

size_nWIDTH

si
ze

_k
si

ze
_m

size_k

• Matrix multiplication of two non-square matrices
• Finish the TODO tasks in kernels

• Naïve implementation
• Tiled implementation

• Compare the execution times

Correct output:

Matrix multiplication naive seems OK
Matrix multiplication tiled seems OK

Time multiplication naive:   xxxx.xxx ms
Time multiplication tiled:   yyyy.yyy ms
Speedup is  z.zz
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Convolution 
• basic example for stencil computation pattern 

• an array operation where each output data 
element is a weighted sum of a collection of 
neighboring input elements

• the weights used in the weighted sum calculation 
are defined by an input mask array, commonly 
referred to as the convolution kernel

• we will refer to these mask arrays as 
convolution masks to avoid confusion.

• the value pattern of the mask array elements 
defines the type of filtering done

• Image Blur example is a special case where all 
mask elements are of the same value and hard 
coded into the source code.

1 2 3 4 5 6 7N

3 4 5 4 3M

3 8 15 16 15Tmp

57P

* * * * *

= = = = =

1 1 1 1 1∑

P[2] = N[0]*M[0] + N[1]*M[1] + N[2]*M[2] + N[3]*M[3] + N[4]*M[4]

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]
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Convolution 
• basic example for stencil computation pattern 

• an array operation where each output data 
element is a weighted sum of a collection of 
neighboring input elements

• the weights used in the weighted sum calculation 
are defined by an input mask array, commonly 
referred to as the convolution kernel

• we will refer to these mask arrays as 
convolution masks to avoid confusion.

• the value pattern of the mask array elements 
defines the type of filtering done

• Image Blur example is a special case where all 
mask elements are of the same value and hard 
coded into the source code.

1 2 3 4 5 6 7N

3 4 5 4 3M

6 12 20 20 18Tmp

57 76P

* * * * *

= = = = =

1 1 1 1 1∑

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

P[3] = N[1]*M[0] + N[2]*M[1] + N[3]*M[2] + N[4]*M[3] + N[5]*M[4]
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Convolution 
• basic example for stencil computation pattern 

• an array operation where each output data 
element is a weighted sum of a collection of 
neighboring input elements

• the weights used in the weighted sum calculation 
are defined by an input mask array, commonly 
referred to as the convolution kernel

• we will refer to these mask arrays as 
convolution masks to avoid confusion.

• the value pattern of the mask array elements 
defines the type of filtering done

• Image Blur example is a special case where all 
mask elements are of the same value and hard 
coded into the source code.

1 2 3 4 5 6 7N

3 4 5 4 3M

9 16 25 24 21Tmp

57 76 98P

* * * * *

= = = = =

1 1 1 1 1∑

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

P[4] = N[2]*M[0] + N[3]*M[1] + N[4]*M[2] + N[5]*M[3] + N[6]*M[4]
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1 2 3 4 5 6 7N

3 4 5 4 3M

12 20 30 28 0Tmp

57 76 98 90P

* * * * *

= = = = =

1 1 1 1 1∑

P[5] = N[3]*M[0] + N[4]*M[1] + N[5]*M[2] + N[6]*M[3] + 0*M[4]

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

0

Boundary condition  
• calculation of output elements near the boundaries 

(beginning and end) of the array need to deal with 
“ghost” elements

• different policies (0, replicates of boundary 
values, etc.)
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Boundary condition  
• calculation of output elements near the boundaries 

(beginning and end) of the array need to deal with 
“ghost” elements

• different policies (0, replicates of boundary 
values, etc.)

1 2 3 4 5 6 7N

3 4 5 4 3M

15 24 35 0 0Tmp

57 76 98 90 74P

* * * * *

= = = = =

1 1 1 1 1∑

P[3] = N[4]*M[0] + N[5]*M[1] + N[6]*M[2] + 0*M[3] + 0*M[4]

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0] P[1] P[2] P[3] P[4] P[5] P[6]

M[0] M[1] M[2] M[3] M[4]

0 0
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Boundary condition  
• calculation of output elements near 

the boundaries (beginning and end) of 
the array need to deal with “ghost” 
elements

• different policies (0, replicates of 
boundary values, etc.)

__global__ void convolution_1D_basic_kernel(
float *N, float *M, float *P,
int Mask_Width, int Width) 

{
int i = blockIdx.x * blockDim.x + threadIdx.x;

float Pvalue = 0;
int N_start_point = i – (Mask_Width/2);

for (int j = 0; j < Mask_Width; j++) {
if (N_start_point + j >= 0 && N_start_point + j < Width)
{
Pvalue += N[N_start_point + j] * M[j];

}
}

P[i] = Pvalue;
}

https://www.nvidia.com/en-us/training/teaching-kits/
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1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2
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N M Ptmp

∑* =

2D Convolution 
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1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2
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12
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1 2 3 4 5 6 7

2 4 5 6 7 8

3 4 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

N M
P

tmp

∑ 179

0 0 0 0

0

0

0

0

0

* =

Ghost cells (apron cells, halo cells)

2D Convolution – boundaries with ghost cells 
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__global__ 
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out, int maskWidth, int w, int h) {

int Col = blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w && Row < h) {
int pixVal = 0;

N_start_col = Col – (maskwidth/2);
N_start_row = Row – (maskwidth/2);

// Get the of the surrounding box
for(int j = 0; j < maskWidth; ++j) {

for(int k = 0; k < maskWidth; ++k) {

int curRow = N_start_row + j;
int curCol = N_start_col + k;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol] * mask[j*maskWidth+k];
}

}
}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal);

}
}

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

N M

*

Col

Row
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__global__ 
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out, int maskWidth, int w, int h) {

int Col = blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w && Row < h) {
int pixVal = 0;

N_start_col = Col – (maskwidth/2);
N_start_row = Row – (maskwidth/2);

// Get the of the surrounding box
for(int j = 0; j < maskWidth; ++j) {

for(int k = 0; k < maskWidth; ++k) {

int curRow = N_start_row + j;
int curCol = N_start_col + k;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol] * mask[j*maskWidth+k];
}

}
}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal);

}
}

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

2

3

4

3

2

1

2

3

2

1

N M

*

N_start_row

N_start_col
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__global__ 
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out, int maskWidth, int w, int h) {

int Col = blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w && Row < h) {
int pixVal = 0;

N_start_col = Col – (maskwidth/2);
N_start_row = Row – (maskwidth/2);

// Get the of the surrounding box
for(int j = 0; j < maskWidth; ++j) {

for(int k = 0; k < maskWidth; ++k) {

int curRow = N_start_row + j;
int curCol = N_start_col + k;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol] * mask[j*maskWidth+k];
}

}
}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal);

}
}

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3
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2

3
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1

2

3
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4
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2
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1
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2
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N M

*

N_start_col + maskWidth

N_start_row
+

maskWidth

N_start_row

N_start_col
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Mask

Using constant memory and caching for Mask
• mask is used by all threads but not modified in the convolution kernel

• all threads in a warp access the same locations at each point in time

• CUDA devices provide constant memory whose contents are aggressively cached
• cached values are broadcast to all threads in a warp
• effectively magnifies memory bandwidth without consuming shared memory

• use of const  __restrict__ qualifiers for the mask parameter informs the 
compiler that it is eligible for constant caching, for example:

__global__ void convolution_2D_kernel(
float *P,  
float *N, 
int height, int width,     
const float __restrict__ *M) 

{ ... }
More info: https://developer.nvidia.com/blog/cuda-pro-tip-optimize-pointer-aliasing/
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Tiling Opportunity Convolution
• calculation of adjacent output elements involve shared 

input elements
• e.g., N[2] is used in calculation of P[0], P[1], P[2]. P[3 

and P[5] assuming a 1D convolution Mask_Width of 
width 5

• we can load all the input elements required by all threads 
in a block into the shared memory to reduce global 
memory accesses

1 2 3 4 5 6 7

N[0] N[1] N[2] N[3] N[4] N[5] N[6]

P[0]

1 2 3 4 5 6 7 P[1]

1 2 3 4 5 6 7 P[2]

1 2 3 4 5 6 7 P[3]

1 2 3 4 5 6 7 P[4]

1 2 3 4 5 6 7 P[5]

1 2 3 4 5 6 7 P[6]
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20 21

1 2 3 2 1

M Mask_Width / 2 (integer arithmetics)  

1 2 3 2 1 …

Input tile size = T + Mask_Width -1

Output tile size - T  

0

0

Assume that we want to have each block to calculate T output elements
• T + Mask_Width -1 input elements are needed to calculate T output elements
• T + Mask_Width -1 is usually not a multiple of T, except for small T values
• T is usually significantly larger than Mask_Width

Tile considerations
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P 72 81 90 99 108 117 126 135

Tile 1

• each thread block calculates one output tile
• each output tile width is T

• T is 4 in this example

Tile 0 Tile N

Output tile size - T  

Output tile definition

Tile 3

…
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Mask_Width / 2 (integer arithmetics)  

1 2 3 2 1 …
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

M

Input tile size = T + Mask_Width -1

Output tile size - T  

0

0

7 8 9 10 11 12 13 14 15 16 17 18Tile in a shared memory: Ns 
• each input tile has all values needed to calculate the corresponding output tile.

Input Tile in Shared Memory 
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Design 1: The size of each thread block matches 
the size of an output tile
• All threads participate in calculating output elements
• blockDim.x would be 8 in our example
• Some threads need to load more than one input 

element into the shared memory

Design 2: The size of each thread block matches the 
size of an input tile
• Some threads will not participate in calculating output elements
• blockDim.x would be 12 in our example
• Each thread loads one input element into the shared memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

Input tile size = T + Mask_Width -1

Output tile size - T  

0

0

7 8 9 10 11 12 13 14 15 16 17 18Tile in a shared memory: Ns 
• each input tile has all values needed to calculate the corresponding output tile.
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Design 1: The size of each thread block matches 
the size of an output tile
• All threads participate in calculating output elements
• blockDim.x would be 8 in our example
• Some threads need to load more than one input 

element into the shared memory

Design 2: The size of each thread block matches the 
size of an input tile
• Some threads will not participate in calculating output elements
• blockDim.x would be 12 in our example
• Each thread loads one input element into the shared memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

Input tile size = T + Mask_Width -1

Output tile size - T  

0

0

7 8 9 10 11 12 13 14 15 16 17 18Tile in a shared memory: Ns 
• each input tile has all values needed to calculate the corresponding output tile.

https://www.nvidia.com/en-us/training/teaching-kits/


Parallel Computation Patterns
Stencil

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 20

Output tile size - T = O_TILE_WIDTH 

0

0

For each thread:
• index_i = index_o – n, 
• where: 

• n is Mask_Width/2
• n is 2 in this example

Thread to Input and Output Data Mapping

Thread 0 reads this Thread 0 writes this

1 2 3 2 1

n = Mask_Width / 2
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N 0

• all threads participate in 
loading input tiles

Thread to Input and Output Data Mapping

float output = 0.0f;

if((index_i >= 0) && (index_i < Width)) {
Ns[tx] = N[index_i];

}
else{
Ns[tx] = 0.0f;

}

7 8 9 10 11 12 13 14 15 16 17 18Shared memory: Ns 
t0index_i(t0) 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20N 0

• some threads do not 
participate in calculating 
output

Thread to Input and Output Data Mapping

index_o = blockIdx.x * O_TILE_WIDTH + threadIdx.x;
index_i = index_o - Mask_Width/2;
if (threadIdx.x < O_TILE_WIDTH){
output = 0.0f;
for(j = 0; j < Mask_Width; j++) {
output += M[j] * Ns[j+threadIdx.x];

}
P[index_o] = output;

}

7 8 9 10 11 12 13 14 15 16 17 18Shared memory: Ns 

P 1 2 3 4 5 6 7 72 81 90 99 108 117 126 135 16 17 18 19 200

t0

t0index_o(t0) 

index_i(t0) 
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Setting Block Size
...
index_o = blockIdx.x * O_TILE_WIDTH +

threadIdx.x;
index_i = index_o – n - Mask_Width/2;

if((index_i >= 0) && (index_i < Width)) {
Ns[tx] = N[index_i];

}
else{
Ns[tx] = 0.0f;

}

if (threadIdx.x < O_TILE_WIDTH){
float output = 0.0f;
for(j = 0; j < Mask_Width; j++) {
output += M[j] * Ns[j+threadIdx.x];

}
P[index_o] = output;

} ...

#define O_TILE_WIDTH 1020
#define BLOCK_WIDTH (O_TILE_WIDTH +

(Mask_Width-1))

dim3 dimBlock(BLOCK_WIDTH,1, 1);

dim3 dimGrid((Width-1)/O_TILE_WIDTH+1, 1, 1)

Kernel code (partial)
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The Efficiency of Tiling
• Significant reduction of Global Memory bandwidth  

1D Convolution 
• The reduction ratio – how many times tiling 

reduces accesses to Global Memory
• MASK_WIDTH * 

(O_TILE_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)

O_TILE_WIDTH 16 32 64 128 256
MASK_WIDTH= 5 4.0 4.4 4.7 4.9 4.9

MASK_WIDTH = 9 6.0 7.2 8.0 8.5 8.7

2D Convolution 
• The reduction ratio is:

• O_TILE_WIDTH2 * MASK_WIDTH2 / 
(O_TILE_WIDTH+MASK_WIDTH-1)2

O_TILE_WIDTH 8 16 32 64
MASK_WIDTH = 5 11.1 16 19.7 22.1

MASK_WIDTH = 9 20.3 36 51.8 64

Tile size has significant effect on of the memory bandwidth reduction ratio.

This often argues for larger shared memory size.  
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Parallel Reduction 
• a commonly used strategy for processing large input data sets
• there is no required order of processing elements in a data set  (associative and commutative)

Approach:
• partition the data set into smaller chunks
• have each thread to process a chunk
• use a reduction tree to summarize the results from each chunk into the final answer
• we will focus on the reduction tree step for now

Reduction also enables other techniques
• reduction is also needed to clean up after some commonly used parallelizing transformations
• Example: privatization

• multiple threads write into an output location
• replicate the output location so that each thread has a private output location (privatization)
• use a reduction tree to combine the values of private locations into the original output location
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Parallel Reduction 
• summarize a set of input values into one value using a 

“reduction operation”
• Max, Min, Sum, Product, … 

• can be used  used with a user defined reduction operation 
function if the operation: 

• is associative and commutative
• has a well-defined identity value (e.g., 0 for sum)

An Efficient Sequential Reduction O(N)
• initialize the result as an identity value for the reduction 

operation
• Smallest possible value for max reduction
• Largest possible value for min reduction
• 0 for sum reduction
• 1 for product reduction

• iterate through the input and perform the reduction operation 
between the result value and the current input value

• N reduction operations performed for N input values
• each input value is only visited once – an O(N) algorithm

3 1 7 0 4 1 6 3

3 7 4 6

7 6

7

max max max max

max max

max

A parallel reduction tree algorithm performs N-1 
operations in log(N) steps

https://www.nvidia.com/en-us/training/teaching-kits/


Parallel Computation Patterns
Reduction

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Reduction 
• summarize a set of input values into one value using a 

“reduction operation”
• Max, Min, Sum, Product, … 

• can be used  used with a user defined reduction operation 
function if the operation: 

• is associative and commutative
• has a well-defined identity value (e.g., 0 for sum)

An Efficient Sequential Reduction O(N)
• initialize the result as an identity value for the reduction 

operation
• Smallest possible value for max reduction
• Largest possible value for min reduction
• 0 for sum reduction
• 1 for product reduction

• iterate through the input and perform the reduction operation 
between the result value and the current input value

• N reduction operations performed for N input values
• each input value is only visited once – an O(N) algorithm

3 1 7 0 4 1 6 3

3 7 4 6

7 6

7

max max max max

max max

max

A parallel reduction tree algorithm performs N-1 
operations in log(N) steps
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Parallel Sum Reduction on GPU
Parallel implementation
• each thread adds two values in each step
• recursively halve # of threads
• takes log(n) steps for n elements, requires n/2 threads

Assume an in-place reduction using shared memory
• the original vector is in device global memory
• the shared memory is used to hold a partial sum vector

• initially, the partial sum vector is simply the original 
vector

• each step brings the partial sum vector closer to the sum
• the final sum will be in element 0 of the partial sum 

vector
• reduces global memory traffic due to reading and writing 

partial sum values
• thread block size limits n to be less than or equal to 

2,048

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3
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__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t     = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t]          = input[start + t];
partialSum[blockDim+t] = input[start +

blockDim.x+t];

// The reduction step 
for (unsigned int stride = 1;

stride <= blockDim.x;
stride *= 2) 

{
__syncthreads();
if (t % stride == 0)
partialSum[2*t]+= partialSum[2*t+stride];

}
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A Simple Thread Block Design
• each thread block takes 2*BlockDim.x input elements
• each thread loads 2 elements into shared memory

__syncthreads() is needed to ensure that all elements of each 
step of partial sums have been generated before the next step

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3
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Global Picture

• at the end of the kernel, Thread 0 in each block 
writes the sum of the thread block in partialSum[0] 
into a vector indexed by the blockIdx.x

• there can be a large number of such sums if the 
original vector is very large

• the host code may iterate and launch another kernel

• if there are only a small number of sums, the host 
can simply transfer the data back and add them 
together

• alternatively, Thread 0 of each block could use 
atomic operations to accumulate into a global sum 
variable.

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3
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Naive Thread to Data Mapping
• each thread is responsible for an even-index location of the 

partial sum vector (location of responsibility)
• after each step, half of the threads are no longer needed
• one of the inputs is always from the location of responsibility
• in each step, one of the inputs comes from an increasing 

distance away

Control Divergence of Naïve Kernel 
• in each iteration, two control flow paths will be sequentially 

traversed for each warp
• threads that perform addition and threads that do not
• threads that do not perform addition still consume execution 

resources
• half or fewer of threads will be executing after the first step
• all odd-index threads are disabled after first step
• after the 5th step, entire warps in each block will fail the if 

test, poor resource utilization but no divergence
• this can go on for a while, up to 6 more steps (stride = 32, 

64, 128, 256, 512, 1024), where each active warp only has 
one productive thread until all warps in a block retire 

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25

sum sum sum sum

sum sum

sum

Data

Thread 0 Thread 1 Thread 2 Thread 3

Step 1

Step 2

Step 3
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Better Thread to Data Mapping
• in some algorithms, one can shift the index usage to 

improve the divergence behavior
• Commutative and associative operators

• always compact the partial sums into the front 
locations in the partialSum[ ] array

• keep the active threads consecutive

3 1 7 0 4 1 6 3

7 2 13 3

20 5

25

sum sum sum sum

sum sum

sum

Data

Thread 
0

Thread 
1

Thread 
2

Thread 
3

Step 1

Step 2

Step 3

for (unsigned int stride = blockDim.x;
stride > 0;
stride /= 2) 

{
__syncthreads();
if (t < stride)
partialSum[t] += partialSum[t+stride];

}
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3 1 7 0 4 1 6 3

7 2 13 3

20 5

25

sum sum sum sum

sum sum

sum

Data

Thread 
0

Thread 
1

Thread 
2

Thread 
3

Step 1

Step 2

Step 3

A Quick Analysis for a 1024 thread block
• no divergence in the first 5 steps

• 1024, 512, 256, 128, 64, 32 consecutive threads 
are active in each step

• All threads in each warp either all active or all 
inactive

• the final 5 steps will still have divergence 

for (unsigned int stride = blockDim.x;
stride > 0;
stride /= 2) 

{
__syncthreads();
if (t < stride)
partialSum[t] += partialSum[t+stride];

}
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Histogram

• A method for extracting notable features and patterns from 
large data sets

• Basic histograms - for each element in the data set, use the 
value to identify a “bin counter” to increment

A Text Histogram Example

• define the bins as four-letter sections of the alphabet: a-d, e-
h, i-l, n-p, …

• for each character in an input string, increment the 
appropriate bin counter.

• in the phrase “Programming Massively Parallel Processors” 
the output histogram is shown below:
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A simple parallel histogram algorithm
• partition the input into sections
• have each thread to take a section of the input
• each thread iterates through its section.
• for each letter, increment the appropriate bin counter

Input Partitioning Affects Memory Access Efficiency
Sectioned partitioning 
• results in poor memory access efficiency
• adjacent threads do not access adjacent memory locations
• accesses are not coalesced
• DRAM bandwidth is poorly utilized

Interleaved partitioning
• all threads process a contiguous section of elements 
• they all move to the next section and repeat
• the memory accesses are coalesced

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Thread id 
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Interleaved partitioning of input

Iteration 2Iteration 1
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Interleaved partitioning of input
• for every input element thread increments selected bin
• bin incrementation results in 

• Read-modify-write operation 
• can result in Data Race 

Data Race in Parallel Thread Execution

thread1: thread2: Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

• Old and New are per-thread register variables.

Question 1: If Mem[x] was initially 0, what would the value of Mem[x] be after threads 1 and 2 have completed?

Question 2: What does each thread get in their Old variable?

Unfortunately, the answers may vary according to the relative execution timing between the two threads, which is referred to as a 
data race. 

https://www.nvidia.com/en-us/training/teaching-kits/
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Data race examples
Time Thread 1 Thread 2

1 (0) Old ß Mem[x]
2 (1) New ß Old + 1
3 (1) Mem[x] ß New
4 (1) Old ß Mem[x]
5 (2) New ß Old + 1
6 (2) Mem[x] ß New

Timing Scenario #1
• Thread 1 Old = 0
• Thread 2 Old = 1
• Mem[x] = 2 after the 

sequence

Time Thread 1 Thread 2
1 (0) Old ß Mem[x]
2 (1) New ß Old + 1
3 (1) Mem[x] ß New
4 (1) Old ß Mem[x]
5 (2) New ß Old + 1
6 (2) Mem[x] ß New

Timing Scenario #2
• Thread 1 Old = 1
• Thread 2 Old = 0
• Mem[x] = 2 after the 

sequence

https://www.nvidia.com/en-us/training/teaching-kits/
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Data race examples

Timing Scenario #3
• Thread 1 Old = 0
• Thread 2 Old = 0
• Mem[x] = 1 after the 

sequence

Timing Scenario #4
• Thread 1 Old = 0
• Thread 2 Old = 0
• Mem[x] = 1 after the 

sequence

Time Thread 1 Thread 2
1 (0) Old ß Mem[x]
2 (1) New ß Old + 1
3 (0) Old ß Mem[x]
4 (1) Mem[x] ß New
5 (1) New ß Old + 1
6 (1) Mem[x] ß New

Time Thread 1 Thread 2
1 (0) Old ß Mem[x]
2 (1) New ß Old + 1
3 (0) Old ß Mem[x]
4 (1) Mem[x] ß New
5 (1) New ß Old + 1
6 (1) Mem[x] ß New

https://www.nvidia.com/en-us/training/teaching-kits/
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Atomic Operations Ensure Good Outcomes

Timing Scenario #3
• Thread 1 Old = 0
• Thread 2 Old = 0
• Mem[x] = 1 after the 

sequence

Timing Scenario #4
• Thread 1 Old = 0
• Thread 2 Old = 0
• Mem[x] = 1 after the 

sequence

Time Thread 1 Thread 2
1 (0) Old ß Mem[x]
2 (1) New ß Old + 1
3 (0) Old ß Mem[x]
4 (1) Mem[x] ß New
5 (1) New ß Old + 1
6 (1) Mem[x] ß New

Time Thread 1 Thread 2
1 (0) Old ß Mem[x]
2 (1) New ß Old + 1
3 (0) Old ß Mem[x]
4 (1) Mem[x] ß New
5 (1) New ß Old + 1
6 (1) Mem[x] ß New

thread1:

thread2: Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

thread1:

thread2: Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Or 
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Atomic Operations

thread1:

thread2: Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

thread1:

thread2: Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Or 

Key Concepts of Atomic Operations

• a read-modify-write operation performed by a single hardware instruction 
on a memory location address

• read the old value, calculate a new value, and write the new value to 
the location

• the hardware ensures that no other threads can perform another read-
modify-write operation on the same location until the current atomic 
operation is complete

• any other threads that attempt to perform an atomic operation on the 
same location will typically be held in a queue

• all threads perform their atomic operations serially on the same 
location

https://www.nvidia.com/en-us/training/teaching-kits/
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Atomic Operations

thread1:

thread2: Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

thread1:

thread2: Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Old ß Mem[x]
New ß Old + 1
Mem[x] ß New

Or 

Atomic Arithmetic Operations in CUDA
• performed by calling functions that are translated into single instructions 

(a.k.a. intrinsic functions or intrinsics)
• Atomic add, sub, inc, dec, min, max, exch (exchange), CAS (compare 

and swap)
• Read CUDA C programming Guide for details

Example: Atomic Add
int atomicAdd(int* address, int val);

• reads the 32-bit word old from the location pointed to by address in global or 
shared memory, computes (old + val), and stores the result back to memory 
at the same address. 

• these three operations are performed in one atomic transaction. The 
function returns old. 

More Atomic Adds in CUDA
• unsigned 32-bit integer atomic add - unsigned int atomicAdd
• unsigned 64-bit integer atomic add, single-precision floating-point atomic 

add, double-precision floating-point atomic add, 16-bit floating-point atomic 
add, …
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A Basic Text Histogram Kernel
• The kernel receives a pointer to the input buffer of byte 

values
• Each thread process the input  in a strided pattern

__global__ void histo_kernel(
unsigned char *buffer,
long size,
unsigned int *histo) 

{
int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads
int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x
// consecutive elements
while (i < size) {
int alphabet_position = buffer[i] – “a”;
if (alphabet_position >= 0 && alpha_position < 26) 
atomicAdd(&(histo[alphabet_position/4]), 1);

i += stride;
}

}

https://www.nvidia.com/en-us/training/teaching-kits/
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A Basic Text Histogram Kernel

__global__ void histo_kernel(
unsigned char *buffer,
long size,
unsigned int *histo) 

{
int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads
int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x
// consecutive elements
while (i < size) {
int alphabet_position = buffer[i] – “a”;
if (alphabet_position >= 0 && alpha_position < 26) 
atomicAdd(&(histo[alphabet_position/4]), 1);

i += stride;
}

}

Final 
Copy

*histo

…Block 0 Block 1 Block N

Atomic Updates

Heavy contention and serialization

https://www.nvidia.com/en-us/training/teaching-kits/


Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Privatization
• Privatization is a technique for reducing 

latency, increasing throughput, and 
reducing serialization

Final 
Copy

*histo

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final 
Copy

Copy N…

Block 0 Block 1 Block N

Much less contention and serialization

Heavy contention and serialization

Much less contention 
and serialization
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Privatization
• privatization is a technique for reducing latency, increasing 

throughput, and reducing serialization

Cost and Benefit of Privatization
Cost
• overhead for creating and initializing private copies
• overhead for accumulating the contents of private copies into the 

final copy
Benefit
• much less contention and serialization in accessing both the 

private copies and the final copy
• the overall performance can often be improved more than 10x

Shared Memory Atomics for Histogram 
• each subset of threads are in the same block
• much higher throughput than DRAM (100x) or L2 (10x) atomics
• less contention – only threads in the same block can access a 

shared memory variable
• this is a very important use case for shared memory!

Copy 0 Copy 1

Final 
Copy

Copy N…

Block 0 Block 1 Block N

Much less contention and serialization

https://www.nvidia.com/en-us/training/teaching-kits/


Parallel Computation Patterns
Histogram

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Privatized Histogram kernel __global__ void histo_kernel(unsigned char *buffer,
long size, unsigned int *histo) 

{
__shared__ unsigned int histo_private[7];

if (threadIdx.x < 7) histo_private[threadidx.x] = 0;

__syncthreads();

int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads
int stride = blockDim.x * gridDim.x;
while (i < size) {
int alphabet_position = buffer[i] – “a”;
if (alphabet_position >= 0 && alpha_position < 26) 
atomicAdd(&(private_histo[alphabet_position/4]), 1);

i += stride;
}

// wait for all other threads in the block to finish
__syncthreads();

if (threadIdx.x < 7) {
atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x] );

}
}

Create private copies of the 
histo[] array for each thread block

Initialize the bin counters in the 
private copies of histo[] 

Build Private Histogram

Build Final Histogram
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More on Privatization

• privatization is a powerful and frequently used technique for parallelizing applications

• the operation needs to be associative and commutative
• histogram add operation is associative and commutative
• no privatization if the operation does not fit the requirement

• the private histogram size needs to be small
• fits into shared memory

• What if the histogram is too large to privatize?
• sometimes one can partially privatize an output histogram and use range testing to go to either global memory or shared 

memory
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CPU-GPU Data Transfer using DMA
• DMA (Direct Memory Access) hardware is used by cudaMemcpy() for better efficiency

• CPU is not used and perform useful calculations 
• DMA is hardware unit used to transfer given number of bytes

• between physical memory address space regions
• uses system interconnect: in current systems PCI-Express 

Virtual Memory Management 
• Problem for DMA: not all variables and data structures are always located in the 

physical memory

Data Transfer and Virtual Memory 
• DMA uses ONLY physical addresses
• when cudaMemcpy() copies an array, it is implemented as one or more DMA transfers

Solution: Pinned Memory
• pinned memory are virtual memory pages that are specially selected, and they cannot 

be paged out (removed from physical memory)
• pinned memory is allocated with a special system API function call

CPU memory that serve as the source or destination of a DMA transfer must be 
allocated as pinned memory

CPU Main Memory (DRAM)

GPU card 
(or other I/O cards)

DMAGlobal 
Memory

PCIe
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CUDA data transfer uses pinned memory.
• the DMA used by cudaMemcpy() requires that any source or destination 

in the host memory is allocated as pinned memory
• if a source or destination of a cudaMemcpy() in the host memory is not 

allocated in pinned memory, it needs to be first copied to a pinned 
memory – extra overhead

• cudaMemcpy() is faster if the host memory source or destination is 
allocated in pinned memory since no extra copy is needed

Using Pinned Memory in CUDA
• use the allocated pinned memory and its pointer the same way as those 

returned by malloc();
• the only difference is that the allocated memory cannot be paged by the 

OS
• the cudaMemcpy() function should be about 2X faster with pinned 

memory
• pinned memory is a limited resource
• over-subscription can have serious consequences 

CPU Main Memory (DRAM)

GPU card 
(or other I/O cards)

DMAGlobal 
Memory

PCIe

Allocate/Free Pinned Memory
cudaHostAlloc(), three parameters
• Address of pointer to the allocated memory
• Size of the allocated memory in bytes
• Option – use cudaHostAllocDefault for now
cudaFreeHost(), one parameter
• Pointer to the memory to be freed

https://www.nvidia.com/en-us/training/teaching-kits/
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Example: Vector Addition Host Code
CPU Main Memory (DRAM)

GPU card 
(or other I/O cards)

DMAGlobal 
Memory

PCIe

int main()
{
float *h_A, *h_B, *h_C;
…
cudaHostAlloc((void **) &h_A, N* sizeof(float), cudaHostAllocDefault);
cudaHostAlloc((void **) &h_B, N* sizeof(float), cudaHostAllocDefault);
cudaHostAlloc((void **) &h_C, N* sizeof(float), cudaHostAllocDefault);
…
// cudaMemcpy() runs 2X faster

}

https://www.nvidia.com/en-us/training/teaching-kits/


Concurrency using CUDA Streams 

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

System can perform multiple CUDA operations 
simultaneously: 
• multiple CUDA kernels on GPU
• one cudaMemcpyAsync from Host to Device 
• one cudaMemcpyAsync from Device to Host 
• computation on the CPU

CUDA Stream
• a sequence of operations that execute in issue-order on the GPU

Stream Semantics
• Two  operations  issued  into  the  same  stream  will  execute  in  

issue-order.    Operation  B  issued  after  Operation  A  will  not  begin  
to execute  until  Operation  A  has  completed. 

• Two  operations  issued  into  separate  streams  have  no  ordering 
prescribed  by  CUDA.    Operation  A  issued  into  stream  1  may  
execute before,  during,  or  after  Operation  B  issued  into  stream  2. 

• Operation:    Usually,  cudaMemcpyAsync or  a  kernel  call.    More 
generally,  most  CUDA  API  calls  that  take  a  stream  parameter,  as  
well as stream  callbacks.

Transfer 
CPU à GPU

Transfer 
GPU à CPUKernel 

Transfer 
CPU à GPU

Transfer 
GPU à CPU

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

…

Transfer 
CPU à GPU

Kernel 

Transfer 
GPU à CPU

Transfer 
GPU à CPU

time

Sequential execution

Concurrent execution

CPU execution – multi-threaded
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Default Stream (aka Stream '0’)
• Stream used when no stream is specified
• Completely synchronous w.r.t. host and device

• As if cudaDeviceSynchronize() inserted before and after every 
CUDA operation

• Exceptions – asynchronous w.r.t.
• hostKernel launches in the default stream
• cudaMemcpy*Async
• cudaMemset*Async
• cudaMemcpy within the same device 
• H2D cudaMemcpy of 64kB or less

Requirements for Concurrency

Transfer 
CPU à GPU

Transfer 
GPU à CPUKernel 

Transfer 
CPU à GPU

Transfer 
GPU à CPU

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

…

Transfer 
CPU à GPU

Kernel 

Transfer 
GPU à CPU

Transfer 
GPU à CPU

time

Sequential execution

Concurrent execution

CPU execution – multi-threaded
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CUDA Streams  – How  to  use  them?

• Create/Destroy
• cudaStream_t stream;
• cudaStreamCreate(&stream);
• cudaStreamDestroy(stream);

• Launch
• my_kernel<<<grid,block,0,stream>>>(...);
• cudaMemcypAsync( …, stream );

• Synchronize
• cudaStreamSynchronize(stream);

Transfer 
CPU à GPU

Transfer 
GPU à CPUKernel 

Transfer 
CPU à GPU

Transfer 
GPU à CPU

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

Kernel 

…

Transfer 
CPU à GPU

Kernel 

Transfer 
GPU à CPU

Transfer 
GPU à CPU

time

Sequential execution

Concurrent execution

CPU execution – multi-threaded
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Basic Example 1: KERNEL CONCURRENCY
• assume foo only utilizes 50% of the GPU 
• using user streams

cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

foo<<<blocks,threads,0,stream1>>>();
foo<<<blocks,threads,0,stream2>>>();

cudaStreamDestroy(stream1);
cudaStreamDestroy(stream2);

Kernel 

https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/cuda/09-cuda-streams-

Kernel 

Stream 1 

Stream 2 

CPU
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Basic Example 2: CONCURRENT MEMORY COPIES
• assume pinned memory

Synchronous
cudaMemcpy(...);
foo<<<...>>>();

Asynchronous Same Stream
cudaMemcpyAsync(...,stream1);
foo<<<...,stream1>>>();

Asynchronous Different Streams
cudaMemcpyAsync(...,stream1);
foo<<<...,stream2>>>();

Data Transfer 

https://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/cuda/09-cuda-streams-

Kernel Stream 1 

CPU

Data Transfer Kernel Stream 1 

CPU

Data Transfer 

Kernel 

Stream 1 

Stream 2 

CPU

https://www.nvidia.com/en-us/training/teaching-kits/


CPU-GPU Data Transfer using DMA

Slide is partially based on NVIDIA GPU Teaching Kit – Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

Serialized Data Transfer and Computation
• So far, the way we use cudaMemcpy serializes data 

transfer and GPU computation for VecAddKernel()

Ideal, Pipelined Timing
• Divide large vectors into segments
• Overlap transfer and compute of adjacent segments

Let CUDA devices overlap transfers and kernels 
execution
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Stream 4

Stream 1

Stream 2

Stream 3

Stream 4

Transfer 
A

Transfer 
B

Transfer 
C

Kernel 
C = A + B

T
A1

T
B1

T
C1K1 T

C2
T

C3
T

C4K2 K3 K4T
A2

T
A3

T
A4

T
B2

T
B3

T
B4

T
A1

T
B1

T
C1K1

T
C2

T
C3

T
C4

K2

K3

K4

T
A2

T
A3

T
A4

T
B2

T
B3

T
B4

T
C1

T
C2

T
C3

T
C4

K1

K2

K3

K4

T
A1

T
A2

T
A3

T
A4

T
B1

T
B2

T
B3

T
B4

T
C1

T
C2

T
C3

T
C4

K1 K2 K3 K4

T
A1

T
A2

T
A3

T
A4

T
B1

T
B2

T
B3

T
B4D to H engine 

H to D engine 

GPU processing

time

https://www.nvidia.com/en-us/training/teaching-kits/


CPU-GPU Data Transfer using DMA

Nvidia: https://www.olcf.ornl.gov/wp-content/uploads/2020/07/07_Concurrency.pdf

Serialized Data Transfer and Computation
//non-streamed version 
cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, size, cudaMemcpyHostToDevice);
Kernel<<<b, t>>>(d_a, d_b, d_c, N);
cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost);

//streamed version 
// c    – number of pipeline phases 
// ns   – total number of streams used 
// size – size of input arrays 
cudaStream_t stream[ns];
for (int i = 0; i < ns; ++i)
cudaStreamCreate(&stream[i]);

for (int i = 0, i<c; i++){ 
size_t off = (size/c)*i;
cudaMemcpyAsync(d_a+off, h_a+off, size/c, cudaMemcpyHostToDevice, stream[i%ns]);
cudaMemcpyAsync(d_b+off, h_b+off, size/c, cudaMemcpyHostToDevice, stream[i%ns]);
Kernel<<<b/c, t, 0, stream[i%ns]>>>(d_a+off, d_b+off, d_c+off, N/c);
cudaMemcpyAsync(h_c+off, d_c+off, size/c, cudaMemcpyDeviceToHost, stream[i%ns]);

}
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Thank you for your attention!
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