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Accelerators in HPC -
Historical Analysis S Ctra 18

Vector Massively IZ/Iultlcores and Mo i T '
Machines : Parallel | Kterolgeneous
1| Processors | ccelerators
PetaFLOPS (GPU) = = = = = = = = = = = =
PetaFLOPS (Cell) = = === == = = == L
I I |
———————— I
TeraFLOPS (MPPs | '
I
I A R ESESESR
l : : IBM Roadrunner (2008)
I I » the first heterogeneous supercomputer
| ' : _ » installed in Los Alamos National Lab
I I 12011 Time . 6,480 AMD Opteron processors
1 - > « with 52 TB RAM
993 ?008 _ _ * 12,960 PowerXCell 8i processors
End of Moore’s Law in Clocking! « 296 racks - 2.35 MW power consumption
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Accelerators in HPC :
Historical Analysis S Ctl”a 18

eep Computing Processing

# CPU

Computer Year 150 —|
P cores | ;

Summit, USA 2 414 592 2018 —
Sunway TAIHULIGHT 10649600 2016
TIANHE-2, CHINA 3120 000 2015
Titan, USA 560 640 2012 90 AMD [
g : Intel
7 |
60 , ATI _ 7
Tianhe-1A, China 186368 2010 ‘ NVIDIA
Roadrunner, USA 122 400 2008 30
Clearspeed CSX600 [ |
2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2007 2018 2019 2020 2021
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ORNL Summit Supercomputer

,‘ PR TR

Number of Nodes
Performance

Node performance

Memory per Node

NV memory per Node
Total System Memory
System Interconnect

Interconnect Topology

Processors

File System

Power Consumption

4,608

200 PF Peak, 148 Linpack (FP64)
3.3 ExaOps (FP16)

42 TF
512 GB DDR4 + 96 GB HBM2

1600 GB
>10 PB DDR4 + HBM2 + Non-volatile
Dual Rail Infiniband EDR (25 GB/s)

Non-blocking Fat Tree

2x IBM POWER9
6x NVIDIA Volta

250 PB, 2.5 TB/s, GPFSTM

13 MW

. \ .,'.

Summit: DOE/SC/Oak Ridge National Laboratory

No.1l from Jun 2018 until Nov 2019

Currently no. 2
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Accelerators in HPC -
ORNL Summit Supercomputer SCtra 18

Coherent memory across entire node ® ®
00} o
=319 2w DRAM DRAM =3].9 |2u
: : | | D © |a—»| T | |- | |2 © [a—p| T | |-
NVLink v2 fully interconnects three GPUs and T2l g |°on il | el T2 8 |°n
one CPU on each side node = ”
& ~ ~ a
50 GB/s = & ) © 50GBis ‘
PCle Gen4 connects NVMe and NIC Bl o o B
o 3 Y64 e 3 @
.
: : GB/
Single shared NIC with dual EDR ports S| 1128 [lu|2E| le! Po lend Po [l |28 |<2l2El] |&
- @ 1
o B\ /8| e
50 GB/s el e © @ 50GBIs
3 ‘ 3
£ £
[43] (s3]
N IO 2 NN
Ie( g |O~ Z I®| 8 (O~
()] (o)}
———— e p——

6.0 GB/s Read
NVM 15 1 GB/s Write
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Accelerators in HPC SCt °
Distributed Shared Memory GPU Systems ra ‘ ﬂ

NVIDIA DGX-2
« 2x x86 CPUs with 1.5 TB RAM
« 16x Nvidia Tesla V100 GPU (Volta | | | | |  E—

architecture) ‘ ‘ ‘ ‘ ‘ S -
« 2560 FP64 cores el SR . ; PU I GPU g GF : S 3
« 5120 FP32 cores S |
« 640 tensor cores g > = *‘»/” 7 pLink20
« 32 GB HBM2 memory @ 900GB/s =X [N [ S |
» 512GB HBM total GPU memory PU Board 1 5
. e |
e BX NV||nk@25+25GB/S= 150+150 GB/s I L. = _ _"_"_"_'_"_"_'"m_"_"_"ﬂ'BTNVEnk'ﬂJ"'! e Inﬁ;t:z;::ggt
total GPU Board 2 =
* NVLINK network interconnecting GPGPU | Z
« 12x NVSwitch, throughput 2.4TB/s in — |
bisection A e ST TS ST A Mo |
« 8x 100Gb/s Infiniband SV N\ NN\ ol o
+ NVMe SSD storage 30TB 5l
+  130TF Peak! I

12
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Main Features

Coprocessor to the CPU

PCle based interconnection

Separate GPU memory

Provide high bandwidth access to local data
Slow access to the CPU memory

» Offer higher computational density than CPUs
» Accelerators present heterogeneity!

uP

Hardware Accelerators - Speeding up the Slow Part of the Code
» Enable higher performance through fine-grained parallelism

» Transfer of Control
* Input Data

Z/e: 51:4
o S
i
G M@

« Output Data Vector Engine
« Transfer of Control Processors

13
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Accelerators

tailored for compute-intensive, highly data
parallel computation

many parallel execution units

have significantly faster and more advanced
memory interfaces

more transistors is devoted to data processing
less transistors for data caching and flow control

Very Efficient For

Fast Parallel Floating Point Processing
High Computation per Memory Access

Not As Efficient For

Branching-Intensive Operations
Random Access,
Memory-Intensive Operations

ALU

ALU

Control

ALU

ALU

GPUs

Small caches to boost memory throughput

Energy efficient ALUs

* many, long latency but heavily
pipelined for high throughput

|
|
|
Simple control with no branch prediction | I
|
|
|

CPUs

Powerful ALU

* reduced operation latency

Large caches

* convert long latency memory accesses to
short latency cache accesses

Sophisticated control with branch

prediction for reduced branch latency

Require massive number of threads to _

tolerate latencies

14
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Accelerators

tailored for compute-intensive, highly data
parallel computation

many parallel execution units

have significantly faster and more advanced
memory interfaces

more transistors is devoted to data processing
less transistors for data caching and flow control

Very Efficient For

Fast Parallel Floating Point Processing
High Computation per Memory Access

Not As Efficient For

Branching-Intensive Operations
Random Access,
Memory-Intensive Operations

CPU core — Low Latency Processor

T mT, mT, mT,

GPU Streaming Multiprocessor — High Throughput

W, ||

I
w, 1 ]
W, I

GPU are throughput devices

Processing

Waiting

. Ready

B Citx switch

NVIDIA Corporation 2010

* CPU cores are optimized to minimize latency between operations.
* GPUs aim to minimize latency between operations by scheduling

multiple warps (thread bundles).

15
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Intel Xeon Platinum 8180

nVidia Tesla V100

Intel Xeon Phi KNL

Matrix-2000
NEC SX-Aurora

Intel Stratix 10 DX

Intel Agilex

Xilinx Alveo U280

Xilinx Alveo U250

Fabrication
process
[nm]

14

12

14

16
14
10

16

16

Peak floating

Clock )
point
frequen
- performance
SP/DP
[GHz] [GFLOPs]
1.7 28 3046/1523
5120DP
1.246 2560SP 15700/7800
1.3 64 5324/2662
1.2 128 4914/2457
1.6 8 4900/2450
11520
?
17 DSPs 8600 (SP)
? ? 40000 (FP16)
24.5 (INT8
?
: 9024 DSP TOPs)
33.3 (INT8

? 12288 TOPs)

Peak power Perf. Per Tl;:::;;cal Memor
consumption | Watt SP/DP Bandwi d¥h type y
W GFLOPs/W
W] [GFLOPs/W] | 50
205 15/7 128 DDR4
300 52/26 900 HBM2
MCDRAM/
215 25/12 400/102.4 DDRA4
240 20/10 143.1 DDR4
? ? 1200 HBM2
? ? 512 HBM2
? ? 512 HBM2
DDR4/
225 109 GOPs/W 38/460 HBM?2
225 148 GOPs/W 77 DDR4
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Accelerators in HPC :
Evolution of Graphics Processors SCtra [

Till 90s

* VGA controllers used to accelerate some display functions

Mid 90s to mid 00s T&L evolved to vertex shading
» Fixed-function graphic accelerators for the OpenGL and DirectX APls
« Some GP-GPU capabilities on top of the interface

Graphic Pipeline (for last 20 years)

T | | . Triangle, point, line -
« 3D graphic: triangle setup & rasterization, texture mapping & shading Triangle riangle, point, fine - setup

Modern GPUs

: . hadi i Il
* Programmable multiprocessors (optimized for data-parallel ops) Flat shading, texturing, eventually,

Pixel shading

* OpenGL/DirectX and general purpose language

« Some fixed function hardware (texture, raster, ops, ....)
Blending, Z-buffering, antialliasing

Wider and faster over years

18
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Accelerators in HPC SCt X
Non-unified GPU Architecture GeForce 7800 GTX ra | n

Eﬁﬁﬁfﬂﬁﬁ E 8 Vertex Engines

Z-Cull }+— Triangle Setup/Raster |

Shader Instruction Dispatch | 24 Pixel Shaders

19
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Accelerators in HPC .
Why Unify Shader Processors? S Ctl”a 18

Vertex Shader

Pixel Shader

Heavy Geometry
Workload Perf = 4

Vertex Shader

g
Pixel Shader . &a

_ §5$§:V

Heavy Pixel
Workload Perf = 8

@ NVIDIA Corporation 2007

20
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Accelerators in HPC S Ct ;
Unified Architecture G80 - Graphics Mode ra | n

!

i

v v v

v
se]l_If(seIl_I0(sell IfiseIl 1\l (sl [§(sell ]A(sel( IiiseIl |
L IC INCIC Tl 1 IR 10 Tt 0 TN I IRl (I I ]
L IC INCIC o 10 IR 10 Tt 00 TN 10 IRl 10 I I
L JC JNCC o 0 JRC L T 00 INC I JpC 0 JNC I ]

]

v v

|| (O |
NN N (.
L JC INC L Tl 10 J§0 I

sl ]
]

&
L
L
L

The future of GPUs is programmable processing architecture built around the processor.

21
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Accelerators in HPC :
Why Unify Shader Processors? S Ctra |1

Vertex Shader i L Unified Shader

Pixel Shader

Heavy Geometry Heavy Geometry
Workload Perf = 4 Workload Perf = 11

Vertex Shader Unified Shader

Pixel Shader

- Heavy Pixel Heavy Pixel

© SVIDIA Comporstion 2007 Workload Perf = 8 © NVIDIA Corporation 2007 Workload Perf = 11
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Accelerators in HPC .
Why Unify Shader Processors? S Ctra 18

Unified Shader 4 ol Dynamic resource realocation

Heavy Geometry
Workload Perf = 11

Unified Shader

X ik
— Figure 14. Characteristic pixel and vertex shader workload
== variation over time

Heavy Pixel
@ NVIDI Carporaion 2007 Workload Perf = 11 23
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Accelerators in HPC S Ct ;
Unified Architecture G80 - Graphics Mode ra | n

!

i

v v v

v
se]l_If(seIl_I0(sell IfiseIl 1\l (sl [§(sell ]A(sel( IiiseIl |
L IC INCIC Tl 1 IR 10 Tt 0 TN I IRl (I I ]
L IC INCIC o 10 IR 10 Tt 00 TN 10 IRl 10 I I
L JC JNCC o 0 JRC L T 00 INC I JpC 0 JNC I ]

]

v v

|| (O |
NN N (.
L JC INC L Tl 10 J§0 I

sl ]
]

&
L
L
L

The future of GPUs is programmable processing architecture built around the processor.
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Host

Input Assembler

v v v v v v
HE BN HEEE Bl N NN e e
HE BN HEEE Bl N NN e e
HE BN HEEE Bl N NN e e
HEEE EHEEE HEEE fEEE EhEE EhEe
Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

[ Toxture| | Y || Texture || i |/ oxture | Jf || Texture| |
| | | |

[ Toxture | [ || Toxture | | | | Toxture| | f | {Texture| |
| | | |

e processors execute computing threads

* new operating mode - HW interface for computing or accelerator

25
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» Based on Ampere architecture GA102
chip designed for 3D graphics rather
than scientific computing

« GA102 GPU also features 168 FP64
units (two per SM),

- FP64 TFLOP rate is 1/64th the TFLOP £ | ) T T O O AR O T A A i :f 1 i f Tl

rate of FP32 operations. g || AR JOERE, NN AU RNEOR O AN CACE MOERS OGO RO AR A0S 0 UL

« the small number of FP64 hardware
units are included to ensure any
programs with FP64 code operate
correctly

TN 1T W T T TR T

H\ | \H\ \HH HH H HM

I HH T J i
u u\u M i

TPC TPC TPC TPC TPC TPC
B S v s ‘e ENS eSS
Raster Engine

LT TATTAIT \HH [T

LT

\‘l l \H‘ R A JH ! |

TPC TPC TPC TPC TPC TPC
ENE PSS P S ‘v rn P S
Raster Engine

M L \HH H\H HH \H\ !M i

MRD LIRS AREAD A0 SN

L HJ[ 1l \M Il HH

TPC TPC TFC TPC TPC TPC
PN NS P g “wn NS B S
Raster Engine

GA102 Full GPU with 84 SMs

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

26
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Accelerators in HPC
NVIDIA A40 Architecture

GPU architecture

GPU memory

» Based on Ampere architecture GA102
chip designed for 3D graphics rather
than scientific computing

« GA102 GPU also features 168 FP64
units (two per SM),

« FP64 TFLOP rate is 1/64th the TFLOP
rate of FP32 operations.

« the small number of FP64 hardware
units are included to ensure any
programs with FP64 code operate
correctly

__ https://www.nvidia.com/content/PDF/nvidia-ampere-
ga-102-gpu-architecture-whitepaper-v2.pdf

Memory bandwidth

Interconnectinterface

NVIDIA Ampere architecture-
based CUDA Cores

NVIDIA second-generation
RT Cores

NVIDIA third-generation
Tensor Cores

Peak FP32 TFLOPS (non-Tensor]

Peak FP16 Tensor TFLOPS with
FP16 Accumulate

Peak TF32 Tensor TFLOPS
RT Core performance TFLOPS

Peak BF16 Tensor TFLOPS with
FP32 Accumulate

~ Peak INT8 Tensor TOPS
Peak INT 4 Tensor TOPS

NVIDIA Ampere architecture
48 GB GDDR6 with ECC
696 GB/s

NVIDIA® NVLink® 112.5 GB/s
(bidirectional)® PCle Gen4: 64GB/s

10,752

84

336

37.4

149.7 | 299.4*
74.8 | 149.6*

73.1

149.7 | 299.4*
299.3 | 598.6*

598.7 | 1,197.4*
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Accelerators in HPC
NVIDIA A40 Architecture

GA10x Streaming Multiprocessor (SM)

 includes four SM processing blocks (also called partitions)
« 32 FP32 operations per clock, or
« 16 FP32 and 16 INT32 operations per clock

* In compute mode, the GA10x SM will support the following
configurations:

« 128 KB L1 + 0 KB Shared Memory
« 120 KB L1 + 8 KB Shared Memory
« 112 KB L1 + 16 KB Shared Memory
« 96 KB L1 + 32 KB Shared Memory
« 64 KB L1 + 64 KB Shared Memory
« 28 KB L1+ 100 KB Shared Memory

__ https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-

architecture-whitepaper-v2.pdf

| Loi-Cache + ‘Warp Scheduler + Dispatch (32 dln.dle&’

Register File (16,384 x 32-bit)

TENSOR
FP32 CORE

LO I-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

FP32

L0 i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
FP32 CORE
3rd Gen

LO I-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

FP32

128KB L1 Data Cache / Shared Memory

Tex

Tex

RT CORE
2nd Generation
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Accelerators in HPC .
NVIDIA A40 Architecture S Ctra 1N

Tensor Cores

» specialized execution units designed specifically for '
performing the tensor / matrix operations that are the core E 1
compute function used in Deep Learning Iz |

A

» accelerate the matrix-matrix multiplication

GPU Architecture NVIDIA Ampere

Tensor Cores perSM 4

FP16 FMA operationsper | Dense: 128

Tensor Core Sparse: 256
Total FP16 FMA Dense: 512
operations perSM Sparse: 1024

=

Ampere architecture tensor core

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf 29
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Architecture of
GPU Accelerated Compute Node S Ctra [

GPU Memory
(GDDR, GPU
HBM,...)

GDDRS5: 100s GB/s, 10s of GB
HBM2: ~1 TB/s, 10s of GB

t PCle: 16-lane PCle Gen3: 16 GB/s

CPU Memory
(DDR4,...) <:::> el < > /O Hub (IOH) NVMe storage

DDR4 2666 MHz 5 QPIUPI F,féﬁ;’éﬁ

128 GB/s | 12.8 GBJs (QP)

(DDR4,...) (GDDR, HBM,...)

__________________________

100s of GB 20.8 GB/s (UPI)
. CPU Memory .,\* CPU 1 L S— “, /O Hub ,4," GPU Memory

30
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Accelerators in HPC .
Compute node evaluation S Ctl”a 18

$ nvidia-smi topo —-m

GPU® GPU1l mlx5_0 CPU Affinity NUMA Affinity
GPUOQ X SYS NODE 0-7,16-23 0
GPU1 SYS X SYS 8-15,24-31 1
mlx5_0 NODE SYS X
Legend:
X = Self

SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node

PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)

PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge

NV# = Connection traversing a bonded set of # NVLinks

Note:

CPU: 2x 8-core AMD EPYC 7252 @3.1GHz
GPU: 2x NVIDIA A40 GPUs

31
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Accelerators in HPC
Compute node evaluation

SCtrain

GDDRS: 696 GB/s, 48 GB GPU Memory N
1 PCle: 16-lane PCle Gen4: 32 GB/s
CPUO
G Memor I scoreamp epvc [ 1/0 Hub (IOH) {¢—————> etk
( oc) 7252 @3.1GHz niertace
DDR4 2666 MHz . .
, Infinity fabric
85.3 GB/s theoretical BW :
256 GB total 54 GB/s theoretical BW
CPU 1 GPU Memory
G Vemor I K scoreampeprc KX 10 Hub (I0H) [«»{|  (GDDR, o
(Do) 7252 @3.1GHz HBM....)

32
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Accesing the GPU Accelerated ;
Compute Nodes of the Cluster S Ctra 18

 ssh to the Vienna Scientific Cluster 3 (VSC3), via a jump host vmos

ssh -t trainee99@vmos.vsc.ac.at wvsc3

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Everyone logs in under the same shared user trainee99 — TAKE CARE

* In Zoom you will be provided a password, enter it TWICE (for vmos and vsc3)

If the second prompt for password does not show, ctrl+C and try connecting again (might happen multiple times)
* No need to allocate a slurm job, the job is already running

» you just need to ssh to the correct node

* Instructions how to find out your GPU and node will be provided in Zoom

* For Windows users, Putty instructions are on the next slide

me@my-home-pc:~$ ssh -t trainee99@vmos.vsc.ac.at vsc3

trainee99@vmos.vsc.ac.at's password: <the password>
...some-stuff-you-can-ignore. ..

Password: <the password>
[trainee99@131l ~]$

34
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Accesing the GPU Accelerated
Compute Nodes of the Cluster S Ctra 18

« Connecting to VSC3 on Windows using Putty
 Download at https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
 HostName: vmos.vsc.ac.at
 Port: 22
« Connection type: SSH
* Left menu --> SSH --> Remote command: vsc3
 Open --> in terminal - login as: trainee99
« After that, everything is the same as on the previous slides

* For future, | recommend checking out WSL2 (Windows subsystem for Linux)

35
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General info on the hands-on exercises SCtra \ N
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Hands-on sources also available at https://code.it4i.cz/training/sc train 2

Editing the source code files to complete the tasks:
vim, emacs, nano, ..., directly on VSC3

Visual Studio Code and Remote SSH extension
« Use ssh -J trainee99@Qvmos.vsc.ac.at trainee99@vsc3.vsc.ac.at command line for connecting

Edit files locally on your PC, then scp or rsync to VSC3 (replace 123 with your ID)

scp -o "ProxyJump trainee99@vmos.vsc.ac.at" my file.txt trainee99@vsc3.vsc.ac.at:~/my home dir/CUDA/path/
rsync -r -e "ssh -J trainee99@vmos.vsc.ac.at" . trainee99@vsc3.vsc.ac.at:~/my home dir/CUDA/

When you are located inside the folder cloned from the git

Again, enter the password twice when connecting
* |n case the second prompt for password to VSC3 does not show, cancel and try again
« Same weird behavior as described on previous slide

Again, everyone is logged in under the same user, so BE CAREFUL
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Hands on
Benchmark Hardware Properties SCtra 18

cd 00 gpu info
Run the following benchmarks and complete the TODO values on next 2 slides

Note: there are two participants on each node, if both run the benchmark at the same time,
performance might be lower

Retrieve information about the available GPUs, find global memory capacity
./run_1 device query.sh
Measure CPU memory (RAM) bandwidth
* ./run_2 memory bw cpu.sh
Measure GPU memory bandwidth, compare it with CPU memory bandwidth

* ./run_3 memory bw gpu.sh

Measure CPU-GPU data transfer bandwidth
* ./run_ 4 copy bw cpu gpu.sh

Measure GPU-GPU data transfer bandwidth, compare with CPU-GPU data transfer bandwidth
* ./run 5 copy bw gpu gpu.sh
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Hands on
Benchmark Hardware Properties SCtra 18

GDDRG6: Theoretical bandwidth: 696 GB/s GPU Memory

Benchmark: BabelStream TODO: find GPU GPUO

TODO: Measure global mem. bandwidth global memory A40
capacity

PCle: 16-lane PCle Gen4: 32 GB/s theoretical bandwidth
Benchmark: bandwidthTest from CUDA samples
TODO: Measure PCle bandwidth

CPU O

CFI):)UDI\R/Izmory <:> 8-core AMD EPYC <:> |/O Hub (lOH) .~ INtet\'ffvork
( oc) 7252 @3.1GHz niertace

Theoretical 85.3 GB/s
Benchmark: STREAM benchmark
TODO: Measure CPU memory bandwidth
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CPUO
8-core AMD EPYC

7252 @3.1GHz

e

/O Hub (IOH)

GPU Memory

4\

N/

GPUO
A40

Measure GPU interconnect performance
Theoretical bandwidth: 32 GB/s (PCle Gen4)

Benchmark: OSU benchmark
TODO: Measure GPU to GPU mem. bandwidth

CPU 1
8-core AMD EPYC

7252 @3.1GHz

/O Hub (IOH)

GPU Memory
(GDDR,
HBM,...)

GPU 1
A40

40



Hands on — solution, output
Benchmark Hardware Properties

$ ./run_5 copy bw _gpu gpu.sh

# OSU MPI-CUDA Bandwidth Test

# Send Buffer on DEVICE (D) and Receive Buffer on DEVICE

(D)
# Size Bandwidth (MB/s)
1024 188.05
2048 394.65
. 4 b .sh
4096 817.17 s /run_ —COPY_PW_cPu_gpu
aloz L7z a0 Host to Device Bandwidth, 1 Device(s)
16384 3551.33 PINNED Memory Transfers
22732 gzgg';z Transfer Size (Bytes) Bandwidth (GB/s)
55 1 .
32000000
131072 17182.50 m
2ozl 2t77L 4l Device to Host Bandwidth, 1 Device (s)
524288 23185.55 PINNED Memory Transfers
2838572 ;4222'23 Transfer Size (Bytes) Bandwidth (GB/s)
715 5 .
32000000 25.7
4194304 25857.67 -
8388608 26051.70
16777216 26170.93
33554432 26231.38 $ ./run_3 memory bw_gpu.sh
67108864 26260.76 ..
Function MBytes/sec Min (sec) Max Average
Copy Gy Dy-Yhll 0.00185 0.00187 0.00186
Mul 579703.149 0.00185 0.00188 0.00186
Add 584039.499 0.00276 0.00279 0.00277
Triad 584855.371 0.00275 0.00278 0.00276
Dot 572203.933 0.00188 0.00189 0.00188
$ ./run_2 memory bw_cpu.sh
Function Best Rate MB/s Avg time Min time Max time
Copy: 79567.2 0.050298 0.050272 0.050332
Scale: 53722.3 0.074535 0.074457 0.074618
Add: 57829.1 0.103843 0.103754 0.103920
Triad: 57774.5 0.103947 0.103852 0.104022

Solution Validates: avg error

$ ./run_1 device_query.sh
Detected 2 CUDA Capable device(s)

Device 0: "A40"
CUDA Driver Version / Runtime Version
CUDA Capability Major/Minor version number:
Total amount of global memory:
(084) Multiprocessors, (128) CUDA Cores/MP:
GPU Max Clock rate:
Memory Clock rate:
Memory Bus Width:
L2 Cache Size:
Maximum Texture Dimension Size (x,y,z)
3D=(16384, 16384, 16384)

11.2 / 11.4

8.6
T XYMVBytes (47850782720 bytes)

Maximum Layered 1D Texture Size, (num) layers
Maximum Layered 2D Texture Size, (num) layers

Total amount of constant memory:
Total amount of shared memory per block:
Total shared memory per multiprocessor:

Total number of registers available per block:

Warp size:

Maximum number of threads per multiprocessor:

Maximum number of threads per block:

Max dimension size of a thread block (x,y,z):
Max dimension size of a grid size (x,v,2):

Maximum memory pitch:
Texture alignment:
Concurrent copy and kernel execution:
Run time limit on kernels:
Integrated GPU sharing Host Memory:
Support host page-locked memory mapping:
Alignment requirement for Surfaces:
Device has ECC support:
Device supports Unified Addressing (UVA):
Device supports Managed Memory:
Device supports Compute Preemption:
Supports Cooperative Kernel Launch:
Supports MultiDevice Co-op Kernel Launch:
Device PCI Domain ID / Bus ID / location ID:
Compute Mode:

< Default (multiple host threads can use

simultaneously) >

Device 1: "A40"

> Peer access from A40 (GPUO) -> A40 (GPU1)
> Peer access from A40 (GPUl) -> A40 (GPUO)

(
(

10752 CUDA Co
1740 MHz (1.7
7251 Mhz
384-bit

6291456 bytes
1D=(131072),

1D=(32768), 2
2D=(32768, 32
65536 bytes
49152 bytes
102400 bytes
65536

32

1536

1024

1024, 1024, 6
2147483647, 6

res
4 GHz)

2D=(131072, 65536),

048 layers
768), 2048 layers

4)
5535, 65535)

2147483647 bytes

512 bytes

Yes with 2 copy engine(s)

No

No

Yes

Yes
Enabled
Yes

Yes

Yes

Yes

Yes

0/ 65/ 0

::cudaSetDevice () with device

Yes
Yes
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Ways to Accelerate Applications S Ct A | N

Libraries
» ease of use:

« enables GPU accele_ratlon without Applications
any GPU programming
: N\ ™
« drop-in: - | .
P Libraries Compiler Programming
 follow standard APlIs Directives Languages
. \_ y,
* minimal code changes - o
. lity: Easy to use Easy to use Most Performance
quallty. Most Performance Portable code Most Flexibility

 high-quality implementations

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 43
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Ways to Accelerate Applications S Ct A | N

Compiler Directives

* ease of use | | Applications
» compiler takes care of details of parallelism
management and data movement r N 7 ~
« portable Libraries Compiler Programming
» code is generic, not specific to any type of i i
hardwara P y P Directives Languages
. J . Yy
« Example: OpenACC Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility

« Compiler directives for C, C++, and FORTRAN

#pragma acc parallel loop
copyin(inputl[0O:inputLength],input2[0:inputLength]),
copyout (output[0:inputLength])
for(i = 0; i < inputLength; ++i) {
output[i] = inputl[i] + input2[i];
}

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 44
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Programming Languages

» Performance: best control of parallelism and P
data movement P Applications
 Flexible: the computation does not need to fit r N\ 7 ~
into a limited set of library patterns or directives Compiler
« Complex: programmer often needs to express Libraries . .
morepdetaﬁs J P Directives
g J L y,
Easy to use Easy to use

Most Performance

GPU Programming Languages

Numerical analytics MATLAB, Mathematica
Python PyCUDA, Numba
Fortran CUDA Fortran, OpenACC

Portable code

Programming

Languages

Most Performance
Most Flexibility

C CUDA C, OpenACC
C++ CUDA C++, Thrust
C# Hybridizer

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 45
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CUDA programming -
Data Parallelism SCtra 11

Vector addition example

// Compute vector sum C = A + B A+B=C
void vecAdd(float *h A, float *h B, float *h C, int n)

=+ =+ op 0P

for (i = 0; i < n; i++)
h C[i] = h A[i] + h B[i];

} vector [IERH IEE IEEIN - - - (EXEEN
S| I—  I— I—

int main()

{

// Memory allocation for h A, h B, and h C

= — —
// read h A and h B from file for N elements Vector C | @l0) C[1] C[2]

vecAdd(h A, h B, h C, N);
}

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 46
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CUDA programming -
Heterogenous Program S Ctra 18

______________________ @PH_“__“_“__“__“__“ GPU  4include <cuda.h>
. Memory Allocation in Host memory void vecAdd(float *h A, float *h B, float *h C,
i & Initialization of Values j int n)
_______________________________________________ (
p {l int size = n* sizeof(float);
Memory Allocation in Device memory ] float *d_A, *d_ B, *d _C;
p {l _ // allocate device memory for A, B, and C
Data transfer from Host to Device ] // copy A and B to device memory

o _ // kernel launch code
Computation in Device /; _ gpy performs the actual vector addition

" 4

( : ) // copy C from the device memory
Data transfer from Device to Host

{l // Free device vectors

Deallocation of Device Memory

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 47
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CUDA programming
Partial Overview of CUDA Memories S Ctra 18

(Device) Grid Device code (kernel) can:
Host * R/W per-thread
Block (0, 0) Block (0, 1) « R/W all-shared
Registers Registers Registers Registers
Thread (0, 0) Thread (0, 1) Thread (0, 0) Thread (0, 1) Host Code can
Host I I i I » Transfer data to/from per grid
memory Global Memory

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 48
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CUDA programming
Partial Overview of CUDA Memories S Ctra 18

(Device) Grid
Block (0, 0) Block (0, 1)

Host

Registers Registers Registers Registers

Thread (0, 0) Thread (0, 1) Thread (0, 0) Thread (0, 1)
4 4 73 4

Host
memory

cudaFree()
* Frees object from device
global memory
* One parameter
 Pointer to freed object

cudaMalloc()
» Allocates an object in the device global memory
 Two parameters
» Address of a pointer to the allocated object
 Size of allocated object in terms of bytes

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 49
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CUDA programming -
Partial Overview of CUDA Memories S Ctra 18

(Device) Grid cudaMemcpy()
Host * memory data transfer

Block (0, 0) Block (0, 1) .
» Requires four parameters

Registers Registers Registers Registers » Pointer to destination

« Pointer to source

* Number of bytes copied

» Type/Direction of transfer
» Transfer to device is synchronous

with respect to the host

Thread (0, 0) Thread (0, 1) Thread (0, 0) Thread (0, 1)
4 4 73 4

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 50
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Memory Allocation in Host memory
| & Initialization of Values

e - - - - - - - - - - ——

P 4

int main(){

float *h A, *h B, *h C;

int n = 10000000 // size of an array
int size = n * sizeof(float);

= (float*)malloc(size);
= (float*)malloc(size);
= (float*)malloc(size);

o pe o)
Qw B

// Initialize array

for(int 1 = 0; i < array size; i++){
h A[i] = 1.0f;

h B[i] = 2.0f;}

vecAdd(h_A, h B, h C, n);

// Deallocate host memory
free(h A); free(h A); free(h C);

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 51
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CUDA programming -
Explicit Memory Management SCtra 18

CPU GPU void vecAdd(float *h A, float *h B, float *h C,

jpmmmmemmmmeeeeeeeeeaaa- oo mmsooosoooooooooooo . int n)
. Memory Allocation in Host memory

& Initialization of Values

{

NS _———— -

int size = n * sizeof(float);
float *d A, *d_B, *d C;
cudaMalloc((void **) &d A, size);
cudaMalloc((void **) &d B, size);
cudaMalloc((void **) &d C, size);

h A d A

% d B

h C d C
Host Device
memory memory

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 52
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CUDA programming -
Explicit Memory Management SCtra 18

CPU GPU void vecAdd(float *h A, float *h B, float *h C,

jpmmmmemmmmeeeeeeeeeaaa- oo mmsooosoooooooooooo . int n)
. Memory Allocation in Host memory

& Initialization of Values

{
int size = n * sizeof(float);
float *d A, *d_B, *d C;
cudaMalloc((void **) &d A, size);
cudaMalloc((void **) &d B, size);
cudaMalloc((void **) &d C, size);

N —————

cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);

h_ d_
Host Device
memory memory

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 53
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CUDA programming -
Explicit Memory Management SCtra 18

CPU GPU void vecAdd(float *h A, float *h B, float *h C,

jpmmmmemmmmeeeeeeeeeaaa- oo mmsooosoooooooooooo . int n)
. Memory Allocation in Host memory

& Initialization of Values

{
int size = n * sizeof(float);
float *d A, *d_B, *d C;
cudaMalloc((void **) &d A, size);
cudaMalloc((void **) &d B, size);
cudaMalloc((void **) &d C, size);

N —————

A

Data transfer from Host to Device } cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);

‘ cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);

[ Computation in Device ]

" 4

// Kernel run

cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);

Bt | | e
Host Device
memory memory

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 54
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Explicit Memory Management SCtra 18

CPU GPU void vecAdd(float *h A, float *h B, float *h C,

jpmmmmemmmmeeeeeeeeeaaa- oo mmsooosoooooooooooo . int n)
. Memory Allocation in Host memory

& Initialization of Values

{
int size = n * sizeof(float);
float *d A, *d B, *d C;
cudaMalloc((void **) &d A, size);
cudaMalloc((void **) &d B, size);
cudaMalloc((void **) &d C, size);

N —————

A

Data transfer from Host to Device } cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);

~ cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);

[ Computation in Device ] // Kernel run

cudaMemcpy (h C, d C, size, cudaMemcpyDeviceToHost);

cudaFree(d A);
cudaFree(d B);
cudaFree(d C);

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 55
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CUDA programming -
Unified Memory SCtra 18

Host GPU 0 GPU 1 GPU 2
-t ------------ e /e s e T === 1
| Host |
I Global Memory Global Memory Global Memory |
, memory |
| |

Unified Memory

» Single memory address space accessible from all CPUs/GPUs in a single server
« maintain single copy of data
« On-demand page migration - hardware/software handles automatically the data migration between the
host and the device maintaining consistency between them

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 56
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CUDA programming
Unified Memory SCtra 18

(Device) Grid Device code (kernel) can:
Host  R/W per-thread
Block (0, 0) Block (0, 1) + R/W all-shared
Registers Registers Registers Registers * R/W managed memory

Thread (0, 0) Thread (0,1) Thread (0, 0) Thread (0, 1)

___________ i .. 1 % ____.1_ __ Hostcodecan

» Transfer data to/from per grid
Global Memory

 R/W managed memory
Unified Memory

In modern GPUs:
+ there are specialized hardware units managing page faulting
« data is migrated on demand, meaning that data gets copied only on page fault

 possibility to oversubscribe memory, enabling larger arrays than the device memory size

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 57
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CUDA programming
Unified Memory SCtra 18

(Device) Grid cudaMaIIocManage_d(vqid** ptr, s?z_e_t size)
Host « Allocates an object in the Unified
eecd D) Block (0, 1) Memory address space.
Registers Registers Registers Registers « Two parameters, with an optional third
parameter.
Thread (0, 0) Thread (0,1) Thread (0, 0) Thread (0, 1) « Address of a pointer to the

___________ S S S S allocated object

« Size of the allocated object in
terms of bytes

« [Optional] Flag indicating if

_______________ Unified Memory  _ _ _ _ _ _ _ _ ______ memory can be accessed from any

device or stream

Global Memory

Can be optimized

« cudaMemAdvise(),

« cudaMemPrefetchAsync(),
« cudaMemcpyAsync()

cudaFree()
* Frees object from unified memory.
* One parameter

» Pointer to freed object

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 58
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_______________________________________________

Memory Allocation in Host memory
| & Initialization of Values

e - - - - - - - - - - ——

P 4

int main(){

float *h A, *h B, *h C;

int n = 10000000 // size of an array
int size = n * sizeof(float);

= (float*)malloc(size);
= (float*)malloc(size);
= (float*)malloc(size);

o pe o)
Qw B

// Initialize array

for(int 1 = 0; i < array size; i++){
h A[i] = 1.0f;

h B[i] = 2.0f;}

vecAdd(h_A, h B, h C, n);

// Deallocate host memory
free(h A); free(h A); free(h C);

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 59
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int main(){
float *h A, *h B, *h C;

int n = 10000000 // size of an array
int size = n * sizeof(float);

= (float*)malloc(size);
(float*)malloc(size);
= (float*)malloc(size);

D"lb"lb"
Qw P
I

// Initialize array

for(int 1 = 0; i < array size; 1i++){
h A[i] = 1.0f;

h B[i] = 2.0f;}

vecAdd(h_A, h B, h C, n);
// Deallocate host memory

free(h A); free(h A); free(h C);
}

int main(){

float *A, *B, *C;

int n = 10000000 // size of an array
int size = n * sizeof(float);

cudaMallocManaged(&A, size);
cudaMallocManaged(&B, size);
cudaMallocManaged(&C, size);

// Initialize array

for(int 1 = 0; i < array size; i++){
A[i] = 1.0f;

B[i] = 2.0f;}

vecAdd(A, B, C, n);

// Deallocate host memory
cudaFree(h a); cudaFree(h b); cudaFree(h c);

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 60
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void vecAdd(float *h A, float *h B, float *h C,
int n)

{

int size = n * sizeof(float);
float *d A, *d B, *d _C;
cudaMalloc((void **) &d A, size);
cudaMalloc((void **) &d B, size);
cudaMalloc((void **) &d C, size);

cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);

// Kernel run
cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);

cudaFree(d A);

cudaFree(d B);

cudaFree(d C);

void vecAdd(float *A, float *B, float *C, int n)

{
}

// Kernel run

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 61
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CUDA programming -
CUDA Execution Model SCtrain

Heterogeneous host (CPU) + device (GPU) application C program
« Serial parts in host C code
» Parallel parts in device SPMD kernel code

Serial code - host

blockldx.x - thread-block index Parallel Kernel (device)
blockDim.x- number of threads in the block KernelA<<< nBlk, nTid >>>(args);
threadldx.x- thread index within a block

Serial code - host

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 62
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CUDA programming -
Device Code / Kernel SCtra 11

Device code or kernel Kernel Code
« _ global__ defines a kernel function =——) {_global_ ()

global_index blockIdx.x blockDim.x + threadIdx.x;
total _threads blockDim gridDim. x;

printf

Host code — kernel execution
()

« say_hello

’

Grid dimension = # of blocks hreadId
_ _ threadIdx. X,
Block dimension = # of threads per block blockIdx. X,

Thread Block 0 Thread Block 1 global_index,

total _threads);
ﬁ ﬁ }
Each thread uses indices to decide what data to work on
2:00:::51_"-" 2 g:oct:;'_x-x 1 « blockldx.x — block index in x direction
oC m.x - oC imx - . . . .
threadldx.x - 0 to 3 threadldx.x -0 to 3 threadldx.x — thread index in x direction

blockDim.x — block size (# of threads per block) in x dir.

55 50 5 0 5
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Hello world in CUDA
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Start simple with a classic hello world

C++ sample output (might be in different order):

Launching the kernel with 2 blocks, each with 4 threads
Kernel was launched, waiting for its completion

Choose your language of preference (C++, Fortran) | zeiio from thread 0/4, block 0/2, my global index is 0/8

« C++ is highly recommended

Hello from thread 1/4, block 0/2, my global index is 1/8
Hello from thread 2/4, block 0/2, my global index is 2/8
Hello from thread 3/4, block 0/2, my global index is 3/8

Cd 01 hello WOrld/<lang>/TaSk Hello from thread 0/4, block 1/2, my global index is 4/8

Hello from thread 1/4, block 1/2, my global index is 5/8

Open the source code hello world. {cu, CUF} Hello frem thread 2/4, block 1/2, my glebal index is 6/8

Finish the TODO tasks
Compile using

* nvcc hello world.cu

Hello from thread 3/4, block 1/2, my global index is 7/8
Kernel execution completed

-0 hello world.x

* nvfortran hello world.CUF -o hello world.x

And run as usual
. ./hello_world.x

Fortran sample output (might be in different order):

Launching the kernel with 2 blocks, each with 4 threads
Kernel was launched, waiting for its completion

thread index block_size block_index grid_size global_idx total_ threads

1 4 1 2 1 8
2 4 1 2 2 8
3 4 1 2 3 8
4 4 1 2 4 8
1 4 2 2 5 8
2 4 2 2 6 8
3 4 2 2 7 8
4 4 2 2 8 8

Kernel execution completed
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CUDA programming
Arrays of Parallel Threads S Ctra 18

A CUDA kernel is executed by a grid (array) of threads
» All threads in a grid run the same kernel code (Single Program Multiple Data)
« Each thread has indexes that it uses to compute memory addresses and make control decisions

I = blockldx.x * blockDim.x + threadldx.x;
C[i] = Ali] + BI[i[;

TR
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CUDA programming -
Thread Blocks SCtra 18

Divide thread array into multiple blocks blockldx and threadldx

* Threads within a block cooperate via « Each thread uses indices to decide what data to work on
* shared memory, - blockldx: 1D, 2D, or 3D

« atomic operations and
» threadldx: 1D, 2D, or 3D

* barrier synchronization

 Threads in different blocks do not interact

Thread Block 0 Thread Block 1 Thread Block N-1
| = blockldx.x * blockDim.x + threadldx.x; | | i = blockldx.x * blockDim.x + threadldx.x; I = blockldx.x * blockDim.x + threadldx.x;
C[i] = Ali] + BI[il; C[i] = Ali] + BI[il; C[i] = A[i] + BI[il;

TR TR TR
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CUDA programming -
Vector Addition Kernel S Ctra 18

Device code or kernel
 compute vectorsumC=A+B

» each thread performs one pair-wise addition
__global_

void vecAddKernel (float* A, float* B, float* C, int n)
{
int i = threadlIdx.x + blockDim.x * blockIdx.x;
if(i<n) C[i] = A[i] + B[i];

}
Each thread uses indices to decide what data to work on
—global__ defines a kernel function . blockldx.x — block index in x direction
 each “_” consists of two underscore characters

: :  threadldx.x —thread index in x direction
e kernel function must return void

« blockDim.x — block size (# of threads per block) in x dir.
* Note: 1D indexing uses .x only, 2D uses .x, .y and 3D uses .x, .y, .z

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 69
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CUDA programming -
Vector Addition Kernel Launch SCtl’a 18

Host code
 Kernel execution — host code that launches kernel

» GPU hardware creates a grid of threads
» each thread executes the kernel function from previous slide

void vecAdd(float* h A, float* h B, float* h C, int n)
{

// d A, d B, d C allocations and memory copies are done

// X vy z direction
dim3 DimGrid (2, 1, 1); // number of blocks per grid to be launched

dim3 DimBlock (4, 1, 1); // number of threads per block to be launched
vecAddKernel<<<DimGrid,DimBlock>>>(d A, d B, d C, n);

70
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CUDA programming -
Vector Addition Kernel Launch SCtra 18

Host code

« Kernel execution — host code that launches kernel

» GPU hardware creates a grid of threads

» each thread executes the kernel function from previous slide

void vecAdd(float* h A, float* h B, float* h C, int n)

{
// d A, d B, d C allocations and memory copies are done
// launches 2 block in a grid and 4 threads per block
vecAddKernel<<<2,4>>>(d A, d B, d C, n);}

}

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 71
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CUDA programming -
Vector Addition Kernel Launch SCtra 18

Host code
» Executes ceil(n/256.0) blocks of 256 threads each
 the ceiling function makes sure that there are enough threads to cover all elements.

void vecAdd(float* h A, float* h B, float* h C, int n)
{

// d A, d B, d C allocations and memory copies are done

vecAddKernel<<<ceil(n/256.0),256>>>(d A, d B, d C, n);
}
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CUDA programming -
Vector Addition Kernel Launch SCtl’a 18

Host code
« This is an equivalent way to express the ceiling function.

void vecAdd(float* h A, float* h B, float* h C, int n)
{
// d A, d B, d C allocations and memory copies are done
dim3 DimGrid((n-1)/256 + 1, 1, 1);
dim3 DimBlock (256, 1, 1);
vecAddKernel<<<DimGrid,DimBlock>>>(d A, d B, d C, n);

}
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CUDA programming -
Vector Addition Kernel Launch SCtra 18

* Host: launches ,extra” blockto  y5i9 vecadd(float* h A, float* h B, float* h C, int n)
cover all elements — ensures that - - -
there is enough threads to {
process all elements dim3 DimGrid(| ceil(n/256.0) |, 1, 1);

« Kernel: controls that thread does ~ 3im3 (256, 1, 1);

not read unallocated memory
vecAddKernel<<<DimGrid,DimBlock>>>(d A, d B, d C, n);

}
__global
void vecAddKernel (float* A, float* B, float* C, int n)
« Kenel: is in range <0, {
int 1 = X + * blockIdx.x;

« Kenel: blockldx is in range <0,
if|(i<n)| C[i] = A[i] + B[i];
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CUDA programming -
Vector Addition — with kernel exec. S Ctra 18

CPU GPU void vecAdd(float *h A, float *h B, float *h C,

jpmmmmemmmmeeeeeeeeeaaa- oo mmsooosoooooooooooo . int n)
. Memory Allocation in Host memory

& Initialization of Values

{
int size = n * sizeof(float);
float *d A, *d B, *d C;
cudaMalloc((void **) &d A, size);
cudaMalloc((void **) &d B, size);
cudaMalloc((void **) &d C, size);

N —————

Data transfer from Host to Device }

A

cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
~ cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);

Computation in Device

vecAddKernel<<<ceil(n/256.0) ,256>>>
4 (d_A, d_B, d_C, n);

cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);

cudaFree(d A);
cudaFree(d B);
cudaFree(d C);

}
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Kernel timing using events (Al [

L. . ] void vecAdd(float *h A, float *h B, float *h C, int n)
Use CUDA events for timing CUDA related execution time. {

* Works as "markers" in execution queue _
float timelInMs;

* Besides timing, they are crucial for GPU synchronization cudaEvent t startEvent, endEvent;
e Important! In order to compute elapsed time correctly. Both events cudaEventCreate (&startEvent) ;

must "happen". That is, they need to reach the end of execution cudaEventCreate (sendEvent ) ;

gueue

* Can be ensured by waiting for the event to "happen" using cudaEventRecord(startEvent);

cudaEventSynchronize () or synchronization with entire

GPU by cudaDeviceSynchronize () vecAddKernel<<<ceil (n/256.0),256>>>

(d_A, 4 B, d_ C, n);
cudaEventRecord (endEvent) ;
cudaDeviceSynchronize();

cudaEventElapsedTime
(&timeInMs, startEvent, endEvent);
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Error checking SCtra 18

Macro and definition:

gpuErrchk(ans) { gpuAssert((ans), ) ); }
inline gpuAssert(cudaError_t , const , , true)
{
(code cudaSuccess)
{
fprintf(stderr," ', cudaGetErrorString(code), file, line);
(abort) exit(code);
}
}
Usage: _
gpuErrchk( cudaMalloc(&a_d, size (int)) );
 API calls: . .
gpuErrchk( cudaMemcpy(a_h, a_d, size (int), cudaMemcpyDeviceToHost) );
kernel , (a);

e Kernel Execution gpuErrchk( cudaPeekAtlLastError() );
gpuErrchk( cudaDeviceSynchronize() );

https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api 77



SUPERCOMPUTING

SCtrain e
PARTNERSHIP

Hands-on
Vector Addition

Univerza v Ljubljani

TECHNISCHE CINECA VSB TECHNICAL ITAINNOVATIONS
UNIVERSITAT || || UNIVERSITY | NATIONAL SUPERCOMPUTING
WIEN OF OSTRAVA CENTER

consorzio
interuniversitario

R Co-funded by the
LR Erasmus+ Programme
ot of the European Union

This project has been funded with support from the European Commission.
This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which
may be made of the information contained therein.



SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Hands-on
Vector Addition S Ctra 11

Vector addition — single GPU
 cd 02 vector add/<lang>/Task
« Task 2a: Using explicit memory management
* Open file vec_add{.cu, .cur} and search for TODOs:
« Implement vector addition computation in CUDA kernel (slide 74)
 Fill in explicit data copy from GPU to CPU after computation (slide 75)
» Compile with -—std=c++11 and run

» Task 2b: Using unified memory
* Open file vec_add managed{.cu, .cUF} and search for TODOs:
» Allocate managed memory (slide 60)
» Compile with -—std=c++11 and run
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Solution SCtraimn

Task 2a Task 2b
__global
void cudaVecAdd (...){ cudaMallocManaged(&A, size);
int i = .Xx + blockDim.x * cudaMallocManaged(&B, size);
blockIdx.x; cudaMallocManaged(&C, size);

if(i<N) C[i] = A[i] + B[i];

cudaMemcpy(h C, d C, size,

cudaMemcpyDeviceToHost) ;
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Solution SCtraimn

Task 2a Task 2b
idx = ¥x * (blockIdx%x - 1)
* threadldx®x real, allocatable, managed :: A(:),
if (idx <= n) then B(:), C(:2)
C(idx) = A(idx) + B(idx) allocate(A(N))
end if allocate(B(N))

allocate(C(N))
h C=d C
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CUDA programming

SCtrain

MultiGPU programing basics

Compute node architecture Network
Interface
CPUO
CPU Memory <:> E5-2650v2 8C <:> PCl-e GPU Memory GPU 0
(DDR4,...)  6GHy A40
QPI/UPI
CPU 1 GPU Memory
CPU Memory LA esoesmasc K PCle (GDDR, Cni0.
(D2%00-0] 2.6GHz HBM....) el
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CUDA programming -
MultiGPU programing basics SCtra 18

Multi-GPU system

« GPU's are numbered from 0 to n-1, where n is the number of GPU'’s. CPUO
« The CUDA driver always starts with a default active device.
PCIE

CPU 1

PCIE

» There are two broad types of Multi GPU communication:
» Through the PCIE bus
* Through NVLINK

GPU 1

GPU 0

GPUO GPUl mlx5 O CPU Affinity NUMA Affinity
GPUO X SYS NODE 0-7,16-23 0
GPU1 SYS X SYS 8-15,24-31 1

$ nvidia-smi topo -m

mlx5 0O NODE SY¥S X

SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes
(e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 84
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CUDA programming -
CUDA host API calls for Multi GPU's SCtrain

cudaSetDevice()

« Set GPU device to use for device code execution on the active host CPUO CPU 1
thread.
* Requires one parameter: PCIE PCIE
* An int with the device id number
« This function doesn’t affect other host threads, meaning that setting the
device on one thread will not set the device in other host threads. Also GPU 0 GPU 1
doesn’t affect previous async calls.
cudaGetDevice() cudaGetDeviceCount()
» Get GPU device being currently used by the » Get the number of CUDA-capable devices in the
active host thread system.
* Requires one parameter: * Requires one parameter:
* An int pointer to store the device id * An int pointer to store the device count

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 85
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CUDA programming -
CUDA host API calls for Multi GPU's SCtrain

cudaSetDevice()

.« Set GPU device to use for device code execution on the active host CPUO
thread.
« Requires one parameter: =

* An int with the device id number

« This function doesn’t affect other host threads, meaning that setting the
device on one thread will not set the device in other host threads. Also GPU 0

CPU 1

PCIE

GPU 1

doesn’t affect previous async calls.

Memory allocation

To allocate or associate memory with a specific device using non-Managed CUDA-API calls, it's necessary to call
cudaSetDevice() before doing the allocation call.

« cudaMalloc() - allocates an object in the device global memory

» cudaHostAlloc() - allocates pinned memory on the host

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 86
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CUDA programming SCJ[ ,
CUDA runtime calls affected by cudaSetDevice ra | ﬂ

« If cudaSetDevice() was called before a kernel launching call, the kernel
will execute in the active device.

CPU O
« It's crucial that every non managed memory being used in the kernel
resides in the active device, otherwise an error will occur. PCIE

« If cudaSetDevice() was called before a cudaStreamCreate(), then the
stream will be associated with the active device. GPU O

» The synchronization functions: cudaDeviceSynchronize(),
cudaStreamSynchronize() are also affected by cudaSetDevice(),
synchronizing tasks only for the active device on the active host thread

CPU 1

PCIE

GPU 1
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CUDA programming -
Vector Addition — with kernel exec. S Ctra 18

CPU GPU void vecAdd(float *h A, float *h B, float *h C,

jpmmmmemmmmeeeeeeeeeaaa- oo mmsooosoooooooooooo . int n)
. Memory Allocation in Host memory

& Initialization of Values

{
int size = n * sizeof(float);
float *d A, *d B, *d C;
cudaMalloc((void **) &d A, size);
cudaMalloc((void **) &d B, size);
cudaMalloc((void **) &d C, size);

N —————

Data transfer from Host to Device }

A

cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);
~ cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);

Computation in Device

vecAddKernel<<<ceil(n/256.0) ,256>>>
4 (d_A, d_B, d_C, n);

cudaMemcpy(h C, d C, size, cudaMemcpyDeviceToHost);

cudaFree(d A);
cudaFree(d B);
cudaFree(d C);

}
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Multi-GPU Vector Addition — Part 1 SCtrain e

void vecAdd(float *h A, float *h B, float *h C, int n)

_______________________________________________

Memory Allocation in Host memory
| & Initialization of Values

int n0 = n / 2;

int nl = n - n0;

int size0 = n0 * sizeof(float);
int sizel = nl * sizeof(float);
float *d A0, *d BO, *d CO;
float *d_Al, *d B1l, *d Cl;

I
I
I
I
1
/

’ cudaSetDevice(0);
cudaMalloc((void **) &d AO, size0);
cudaMalloc((void **) &d BO, size0);
cudaMalloc((void **) &d CO, size0);
cudaMemcpy (d A0, &h A[0], size(0, cudaMemcpyHostToDevice);
cudaMemcpy (d B0, &h B[0], size(0, cudaMemcpyHostToDevice);

\ Data transfer from Host to Device

cudaSetDevice(l);

cudaMalloc((void **) &d Al, sizel);
cudaMalloc((void **) &d Bl, sizel);
cudaMalloc((void **) &d Cl, sizel);
cudaMemcpy (d A0, &h A[nO], sizel, cudaMemcpyHostToDevice);
cudaMemcpy (d B0, &h B[nO], sizel, cudaMemcpyHostToDevice);
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CUDA programming -
Multi-GPU Vector Addition — Part 2 SCtra 18

_______________________________________________

. Memory Allocation in Host memory
: & Initialization of Values

N —————

int n0 = floor(n/2.0);

"""""""""""" i'""""""""""' int nl = ceil(n/2.0);
. . int size0 = n0 * sizeof(float);
- Memory Allocation in Device memory |  int sizel = nl * sizeof(float);

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

7777777777777777777777777777777777777777777777777777777777777 cudaSetDevice(0);
vecAddKernel<<<ceil (n0/256.0),256>>> (d_AO, d BO, d CO, nO);

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

cudaSetDevice(l);
] vecAddKernel<<<ceil (n1/256.0),256>>> (d_Al, d B1, d C1, nl);

pr—

Computation in Device

2

cudaMemcpy (&h_C[0], d _CO, size, cudaMemcpyDeviceToHost);
cudaMemcpy (&h_C[n0],d Cl1l, size, cudaMemcpyDeviceToHost);

. 4

cudaFree(d A0); cudaFree(d Al);
cudaFree(d B0); cudaFree(d Bl);
cudaFree(d C0); cudaFree(d Cl);

}
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float *m A0, float *m BO, *m Al, float *m Bl, int n;
int size = n * sizeof(float);

cudaSetDevice(0); // Will set the active device to 0
cudaMalloc((void**) &m A0, size); // Will allocate memory on device 0
cudaMalloc((void**) &m B0, size); // Will allocate memory on device 0
cudaSetDevice(1l); // Will set the active device to 1
cudaMalloc((void**) &m Al, size); // Will allocate memory on device 1
cudaMalloc((void**) &m Bl, size); // Will allocate memory on device 1

// Memory initialization on the Host and memory transfers

cudaSetDevice(0); // Set the device for kernel execution
vecAdd<<<gridDim, blockDim>>>(m AO,m BO);

cudaSetDevice(1l); // Set the device for kernel execution
vecAdd<<< gridDim, blockDim>>>(m Al,m Bl);

cudaFree(m AQ0); cudaFree(m BO0);

cudaFree(m Al); cudaFree(m Bl);
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Environment variable controlling devices visibility

» Useful for selecting or restricting the set of available GPUs for specific
application even without the access to the source code

« Execute CUDA VISIBLE DEVICES=<comma separated list of
GPU IDs> before running the app
* To list all available GPU IDs run from command line

« Single GPU applications (might cooperate with a peer you share a
node with to select different GPU):

CUDA VISIBLE DEVICES=0 ./app

* Multi GPU applications:
CUDA VISIBLE DEVICES=0,1 ./app
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Vector addition — multi-GPU
* cd 03 _vector add multigpu/<lang>/Task

 Task 3a - Using explicit memory management

* Open file vec_add multi GPU{.cu, .CUF} and search for TODOs:
» Rewrite host allocation so there is only single copy of host arrays.

 Allocate arrays A, B and C with the correct size and setup h A0, h Al, etc. as apointers into
host arrays for particular GPU (e.g. h A0 -> A[0], h Al -> A[size0])

« Compile with --std=c++11 and run (don'’t forget the CUDA VISIBLE DEVICES=0,1
« Task 3b - Using unified memory

./ app)

* Open file vec_add multi GPU managed{.cu, .CUF} and search for TODOs:

« Same task as in 3a, but allocate managed memory for host arrays and set up the pointers
correctly

« Uncomment and think about implications of prefetching

« Compile with --sta=c++11 and run (don’t forget the CUDA VISIBLE DEVICES=0,1 ./app)
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Task 3a Task 3b

cudaHostAlloc(&h A, size, cudaHostAllocDefault);

_ cudaMallocManaged(&A, size);
cudaHostAlloc(&h_B, size, cudaHostAllocDefault);

cudaHostAlloc(&h C, size, cudaHostAllocDefault); cudaMal locManaged ( &B, size ) 7
h A0 = &h A[0]; h_Al = gh A[NO]; .
cudaMallocManaged(&C, size);
h BO = &h _B[0]; h_Bl = &h B[NO];

&h_C[NO]; A0 = &A[0]; Al = &A[NO];
BO

h_co

&h C[0]; h_C1

&B[0]; Bl = &B[NO];

// Setting device 0 as current device.

gpuErrchk (cudaSetDevice(0)); CO0 = &C [ 0 ] 7 Cl

&C[NO];
// Allocation of device memory on device 0.
gpuErrchk(cudaMalloc(&d_AO0, size0));

// Setting device 1 as current device.

gpuErrchk (cudaSetDevice(1l));
// Allocation of device memory on device 0.

gpuErrchk(cudaMalloc(&d_Al, sizel));
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Task 3a Task 3b

real, allocatable, pinned, target :: h A(:), real, allocatable, managed, target ::
h_B(:), h_C(z) h A(:), h B(:), h C(:)

real, pointer :: h AO(:), h BO(:), h CO(:) real, managed, pointer :: h AO(:)
4 4 b - hd 4

real, pointer :: h Al(:), h Bl(:), h Cl(:) h BO(:), h CO(:)
h_AO => h_A(1:N0) h_A1 =>h_A(NO+1:N) real, managed, pointer :: h Al(:),
h_B0 => h_B(1:NO) h_B1 =>h_B(NO0+1:N) h B1(:), h Cl(:)
h_C0 => h_C(1:NO) h_C1 => h_C(NO+1:N) h_AO0 => h_A(1:NO) h_A1=>h_A(NO+1:N)
h_B0 => h_B(1:NO) h_B1 => h_B(NO0+1:N)
result = cudasetDevice(0) h_CO =>h_C(1:N0) h_C1=>h_C(NO+1:N)

allocate(d_AO(NO))

result = cudaSetDevice(1)
allocate(d_A1(N1))
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host device
Grid 1
Block Block
(0, 0) (0,1)
Kernel 1 H
Block
(1, 0)
/
/
/ I
/' / Bdock(l,@)
\
(2,0,0' (1,0,1) (1,0,2) (1,0,3)
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Work distribution

« image will be addressed in 2D
blocks of size

* 16x16 threads

« some threads, highlighted in orange,

will be idle

Control flow divergence

« not all threads in a Block will follow
the same control flow path

1 block:

16x16

threads
per block

62><76 plcture
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CUDA programming -
Processing a Picture with a 2D Grid SCtra 18

i i 1 62X76 picture
Work distribution pictu

« image will be addressed in 2D
blocks of size

« 16x16 threads HAE

« some threads, highlighted in orange, 1 block:
will be idle 16x16 EEREE
threads u
per block :

Control flow divergence

» not all threads in a block will follow
the same control flow path

» 4 different paths in this case

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/



https://www.nvidia.com/en-us/training/teaching-kits/

CUDA programming . |supeRcompuTING
Processing a Picture with a 2D Grid SCtra |1 [hemessrap

Kernel

__global  void PictureKernel(float* d Pin, Row-Major LayOUt in C/C++
float* d Pout,
int height,
int width) M

{ Row*Width+Col =2*4+1=9

// Calculate the row # of
// the d Pin and d Pout element
int Row = blockIdx.y*blockDim.y + threadIdx.y;

// Calculate the column # of
// the d Pin and d Pout element
int Col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one
// element of d Pout if in range
if ((Row < height) && (Col < width)) {
d Pout[Row*width+Col] = 2.0*d Pin[Row*width+Col];
}
}
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Kernel Host Code for Launching 2D kernel

__global  void PictureKernel(float* d Pin,  assume that the picture is m x n,
float* d_Pout, * m pixels in y dimension and n pixels in x dimension
int height, « input d_Pin has been allocated on and copied to device
int width) .

{ « output d_Pout has been allocated on device

// Calculate the row # of
// the d Pin and d Pout element
int Row = blockIdx.y*blockDim.y + threadIdx.y;
dim3 DimGrid((n-1)/16 + 1 m-1)/16+1, 1);
// Calculate the column # of (( ) r ) r 1)
// the d Pin and d Pout element dim3 DimBlock (16, 16, 1);
i 1l = blockIdx.x*blockDim.x + X . . . . .
int Co blockIdx.x*blockDim.x threadldx.x; PictureKernel<<<DimGrid,DimBlock>>>(d_Pin, d_Pout, m, n);
// each thread computes one

// element of d Pout if in range

if ((Row < height) && (Col < width)) {

d Pout[Row*width+Col] = 2.0*d Pin[Row*width+Col];

}
}
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RGB color image

3 values per pix

e r-red
* g-green
e b-blue

Grayscale image

only intesity

grayPixel[l,J] = 0.21*r + 0.71*g + 0.07*b

RGB Kernel:

// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global _ void colorConvert(unsigned char * grayImage,
unsigned char * rgblImage,
int width, int height) {

int col
int row

threadIdx.x + blockIdx.x * blockDim.x;
threadIdx.y + blockIdx.y * blockDim.y;

if (col < width && row < height) {

// get 1D coordinate for the grayscale image
int grayOffset = row*width + col;

}
}

Host code for launching the kernel is the same as in previou s slide.
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mmom RGB colorimage RGB Kernel:
EEEE - 3values per pix // we have 3 channels corresponding to RGB
EEENR e r-red // The input image is encoded as unsigned characters [0, 255]
EEEN
HEEENR e g-green
ENEENEENEENEENEESD « b-blue
EEEENEENEENEENEENEn ]
ENEECEECEEDEEDEEsE Grayscale image

« only intesity

// get 1D coordinate for the grayscale image

int grayOffset = row*width + col;

// one can think of the RGB image having

// CHANNEL times columns than the gray scale image

int rgbOffset = grayOffset*CHANNELS;

unsigned char r = rgbImage[rgbOffset + 0]; // red value for pix
unsigned char g = rgbImage[rgbOffset + 1]; // green value for pix
unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pix

Pixel[l,J] = 0.21*r + 0.71*g + 0.07*b : : : : ,
grayPixel[l,J] ' d Host code for launching the kernel is the same as in previou s slide.
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EEDN

EEDN _

EEEE - 3values per pix

H R

HEEEDNR e g-green
EEEENEEEEENEEEEEER - b-blue
EEEENEEEEENEEEEEEN :
EDEECEEDEEEEmmnm Grayscale image

« only intesity

grayPixel[l,J] = 0.21*r + 0.71*g + 0.07*b

int col
int row

RGB color image RGB Kernel:

// we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global _ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

= threadIdx.x + blockIdx.x * blockDim.x;
threadIdx.y + blockIdx.y * blockDim.y;

if (col < width && row < height) {

// get 1D coordinate for the grayscale image

int grayOffset = row*width + col;

// one can think of the RGB image having

// CHANNEL times columns than the gray scale image

int rgbOffset = grayOffset*CHANNELS;

unsigned char r rgbImage[rgbOffset + 0]; // red value for pix
unsigned char g rgbImage[rgbOffset + 1]; // green value for pix
unsigned char b rgbImage[rgbOffset + 2]; // blue value for pix
// perform the rescaling and store it

// We multiply by floating point constants

grayImage[grayOffset] = (unsigned char) (0.21f*r + 0.71f*g + 0.07£*Db) ;
}

Host code for launching the kernel is the same as in previou s slide.
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Blur Filter
 calculates average value +
inside the mask =t
* BLUR_SIZE value - ' ==
1 block: g
16x16 : : |
threads = i
per block =

‘ r | |
= g

BlurPixel[l,J] = Average value of all pixel in
a mask
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// we have 1 channel, therefore a grayscale image
BLUR SIZE=2 // The input image is encoded as unsigned characters [0, 255]
- __global _ void BlurKernel (unsigned char * inImage,
unsigned char * outlImage,
int width, int height) {

int col = threadIdx.x + blocklIdx.x * blockDim.x;
int row = threadIdx.y + blockIdx.y * blockDim.y;

1 block: if (col < width && row < height) {
16X16 int pixVal = 0; int pixels = 0;
threads // Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
per block for(int blurRow = ) {
for(int blurCol = ) {
int curRow = ;

int curCol = ;

// Verify we have a valid image pixel

if (curRow > && curRow < && curCol > && curCol < ) {
pixval =
pixels = ; // Total number of accumulated pixels
}
}
}
// Write our new pixel value out
outImage([ 1] = (unsigned char) (pixVal )i )}

BlurPixel[l,J] = Average value of all pixel in )
a mask
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Finish the missing code in the kernel on the previous slide

Source code in 04_image blur/<lang>/Task/image blur.<ext>
Tasks are annotated with TODO, only in the kernel
No actual image (to simplify the code), just some pattern which is easy to check for correctness

Compile and run with

°* nvcce image blur.cu -o image blur.x && ./image blur.x

 nvfortran image blur.CUF -o image blur.x && ./image blur.x

Correct output:

Everything seems OK

109



CUDA pProg ramming . SUPERCOMPUTING
mage Blur - Solution SCtrain looees:

// we have 1 channel, therefore a grayscale image
BLUR SIZE=2 // The input image is encoded as unsigned characters [0, 255]
- __global _ void BlurKernel (unsigned char * inImage,
unsigned char * outlImage,
int width, int height) {

int col = threadIdx.x + blocklIdx.x * blockDim.x;
int row = threadIdx.y + blockIdx.y * blockDim.y;

1 block: if (col < width && row < height) {
16X16 int pixVal = 0; int pixels = 0;
threads // Get the average of the surrounding 2xBLUR SIZE x 2xBLUR SIZE box
pertﬂock for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1l; ++blurRow) {
for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1l; ++blurCol) {

int curRow = row + blurRow;
int curCol = col + blurCol;

// Verify we have a valid image pixel

if (curRow > -1 && curRow < height && curCol > -1 && curCol < width) {
pixVal = pixVal + inImage[curRow * width + curCol];

pixels = pixels + 1; // Total number of accumulated pixels

// Write our new pixel value out
outImage[Row * width + Col] = (unsigned char) (pixVal / pixels); }

BlurPixel[l,J] = Average value of all pixel in
a mask
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Transparent scaling of GPU kernels

+ Kernel execution is broken in Grid of Blocks

* blocks can be executed in any order
relative to others

» hardware is free to assign blocks to any
Streaming Multiprocessor (SM) at any time

« a kernel scales to any number of
parallel processors

» this property ensures correct execution on
GPUs with

» different number of Streaming
Multiprocessors (different performance,
different model of GPU accelerators
(A100, A40, ...)

« different GPU architectures

VOLTA GPU

SM

Cores.

128KB L1

SM

Cores.

512KB L2

NVIDIA Jetson AGX Xavier

« ARM based embedded
single board computer
with on-chip GPU

 GPU with 8 SMs

NVIDIA V100
« HPC accelerator
« GPU with 80 SMs
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Thread Execution

» blocks are assigned to Streaming Multiprocessors (SM)

Block 1 Warps

TOT1T2T3T4TS5T6T7 T8

TT3 |

TOT1T2T3T4TS5T6T7 T8

TT3 |

TOT1T2T3T4TS5T6T7 T8

TT3 |

» up to 32 blocks can be assigned to one SM as resources allow
« Ampere generation SM can take up to 2048 threads
» could be 256 (threads/block) * 8 blocks
» or 512 (threads/block) * 4 blocks, etc.
« SM maintains thread/block idx #s
«  SM manages/schedules thread execution

L]
L]
L]
L0

-

I

Block 2 Warps

TOT1T2T3T4T5T6T7 T8 TDT3 |
TOT1T2T3T4T5T6T7 T8 TDT3

TOT1T2T3TATSTE6TZ7 T8 T0T3 |
Warps as Scheduling Units

TOT1T2T3T4T5T6T7 T8 T3OT3 :
« each Block is divided and executed as 32-thread Warps l l l l l l l l l l l

« an implementation decision, not part of the CUDA programming Block 3 Warps

model TOT1T2T3T4T5T6T7 18 13073 |

. . . TOT1T2T3T4T5T6T7 T8 T3T3 |
* warps are SChedU“ng units in SM TOT1T2T3TATS5I6TI7Z I8 2713 |

» threads in a warp execute in SIMD fashion L2 L L e |:>
 future GPUs may have different number of threads in each warp ) l l l l l l l l l l l

« for instance, AMD GPUs have warp size 64 threads

(%]
<
=

L]
L]
L]
L0

-

%)
<
N

L]
L]
L]
L0

-

%)
<
w
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Thread Execution cont. Block 1 Warps

TOT1T2T3T4T5T6T77T8 THT3 |
« SM implements zero-overhead warp scheduling TOTIT2T3T4TSTET7T8  ToTY | HENN
. ) ) TOTIT2T3T4TST6TZ7T8  TNT3 | :”:”:”:
« Warps whose next instruction has its operands ready for TOTIT2T3T4T5T6T7 T8 T3 |:> EEEE
consumption are eligible for execution EREE
» Eligible Warps are selected for execution based on a prioritized | SM 1
scheduling policy
« All threads in a warp execute the same instruction when Block 2 Warps
selected TOT1T2T3TAT5T6T7 T8 T20713 |

TOT1T2T3T4T5T6T7 T8 TDT3
TOT1T2T3T4T5T6T7 T8 TDT3 |

WL 1=

Block 3 Warps

TOT1T2T3T4T5T6T7T8 TDT3 |
TOT1T2T3T4T5T6T7T8 TDT3 |
TOT1T2T3T4T5T6T7T8 TDT3 |

=

L]
L]
L]
L0

-

%)
<
N

L]
L]
L]
L0

-

%)
<
w
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Warps in Multi-dimensional Thread Blocks Block 1 Warps

TOT1T2T3T4TS5T6T7 T8

TT3 |

» The thread blocks are first linearized into 1D in row major order
* In x-dimension first, y-dimension next, and z-dimension last

logical 2-D
organization

TSLO TB:I T3=2 T3:3

»
>

linear order

» Linearized thread blocks are partitioned in warps

* Thread indices within a warp are consecutive and increasing Block 3 Warps
. TOT1T2T3T4TS5T6T7T8 T0T31 |
* Warp 0 starts with Thread 0 TOTIT2T3T4TST6TZTR  TNT3 |
TOT1T2T3T4TS5T6T7T8 T0T31 |
TOT1T2T3 T4 TS5 T6T7 T8 T3OT3

DO NOT rely on any ordering within or between warps

 [f there are any dependencies between threads, you must
__syncthreads () to get correct results (more later)

TOT1T2T3T4TS5T6T7 T8

TT3 |

TOT1T2T3T4TS5T6T7 T8

TT3 |

-

TOT3

I

Block 2 Warps

TOT1T2T3T4T5T6T7 T8 TDT3 |

TOT1T2T3T4T5T6T7 T8 TDT3

TOT1T2T3T4T5T6T7 T8

TDT3 |

-

TT3

I

-

T

=

=

L]
L]
L]
L0

(%]
<
=

L]
L]
L]
L0

%)
<
N

L]
L]
L]
L0

%)
<
w

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/

116


https://www.nvidia.com/en-us/training/teaching-kits/

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Thread Execution and Warps SCJ[ra \ N

Block 1 Warps

SIMD Execution Among Threads in a Warp

. . . . TOT1T2T3T4T5T6T77T8 THT3 |
« All threads in a warp must execute the same instruction at any point TOTIT2T3T4T5T67778  To13 | HENN
in time TOT1T2T3T4TST6T7T8  TNT3 | :”:”:”:
In TOTIT2T3TATST6T7 T8  THT3 |:> :”:”:”:
» This works efficiently if all threads follow the same control flow path | l 1 l l 1 l l l l l 1 HERER
« All if-then-else statements make the same decision SM

» All loops iterate the same number of times SMs are SIMD Processors

Example of a SIMD code:

void vecAddKernel (float* A, float* B, float* C, int n)
{

int 1 = + * ;

C[i] = A[i] + BI[i];
}

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 117



https://www.nvidia.com/en-us/training/teaching-kits/

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Thread Execution and Warps SCJ[ra \ N

Control Divergence (£oo )
« control divergence occurs when threads in a warp {
take different control flow paths by making different do A();
control decisions }
« some take the then-path and others take the
else-path of an if-statement
» some threads take different number of loop {
iterations than others do_B();
» The execution of threads taking different paths are }

serialized in current GPUs

» the control paths taken by the threads in a
warp are traversed one at a time until there is
no more

» during the execution of each path, all threads
taking that path will be executed in parallel

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 118
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Control Divergence

« control divergence occurs when threads in a warp
take different control flow paths by making different
control decisions

« some take the then-path and others take the
else-path of an if-statement

* some threads take different number of loop
iterations than others

» The execution of threads taking different paths are
serialized in current GPUs

» the control paths taken by the threads in a
warp are traversed one at a time until there is
no more

» during the execution of each path, all threads
taking that path will be executed in parallel

« the number of different paths can be large
when considering nested control flow
statements

19
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Control Divergence

« control divergence occurs when threads in a warp
take different control flow paths by making different
control decisions

« some take the then-path and others take the
else-path of an if-statement

* some threads take different number of loop
iterations than others

» The execution of threads taking different paths are
serialized in current GPUs

» the control paths taken by the threads in a
warp are traversed one at a time until there is
no more

» during the execution of each path, all threads
taking that path will be executed in parallel

« the number of different paths can be large
when considering nested control flow
statements

Performance
/

0 2 4 6 8 10 12 14 16 18

Divergence

The control diverges is problem only among threads
within a warp.

The control divergence among warps is perfectly fine
as long as all threads within a warp execute the same
instruction.

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 120
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Divergence can arise when branch or loop condition is a function of thread indices

__global
void vecAddKernel (float* A, float* B, float* C, int n)
{

int i = threadIdx.x + blockDim.x * blockIdx.x;

if (i<n) C[i] = A[i] + B[i];
}

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 121
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GPU
Host : : : :
SM (Streaming Multiproc.) SM (Streaming Multiproc.)
Registers Registers Registers Registers
L C%re Ccire - C%re C(ire _J
Shared memory/ Shared memory/
L1 cache L1 cache
Cache (L2)
Host CPU I ¥ vi Iw ¥
oSt &« with |- > Global Memory
memory cache - v - -
----- » Constant Memory
PCl-e
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Memory hierarchy in Ampere generation (GA100)

Registers

» 256 kB per SM
» Storage local to each threads

Shared memory / L1 (192KB total)

» configurable up to 164KB for SM;

remainder for L1 Cache
» low latency: ~22 cycles (SM), 34 cycles (L1d)
» high bandwidth: ~18 TB/s

Read-only cache

 Up to 128 kB per SM

L2 -40 MB

* latency: ~ 200 or 350 cycles
- BW:~ 7000 GB/s

Global memory — 40 or 80 GB HBM2

« BW ~ 1500 GB/s

SM (Streaming Multiprocesor) SM
Registers Regs.
Shared 1 Read
memory<= ache only

l  E— i
!

Cache (L2)

l

Global Memory

Peter Van Sandt, Citadel, Zhe Jia, Citadel: Dissecting the Ampere GPU Architecture through Microbenchmarking

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/
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Why do GPU have caches?
In general, not for cache blocking
* 100s ~ 1000s of threads running per SM
« tens of thousands of threads sharing the L2 cache
L1, L2 are small per thread.
« Example: at 2048 threads/SM, with 80 SMs:
* 04 bytes L1,
« 38 Bytes L2 per thread

Shared Memory is usually better option to cache data explicitly:

« user managed, no evictions out of your control.

SM (Streaming Multiprocesor) SM
Registers Regs.
Shared 1 Read
memory<= ache only

l  E— i
!

Cache (L2)
Caches on GPUs are useful for: I
« “Smoothing” irregular, unaligned access patterns
« Caching common data accessed by many threads Global Memory
» Faster register spills, local memory
* Fast atomics
« Codes that don’t use shared memory (naive code, OpenACC_C, ...)
Source: NVIDIA https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf 125
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Constant memory

» Read-only variables or arrays of global scope
» Qualified with ___constant __ keyword

« Capacity 64 KiB

« Cached in 8 KiB constant (read-only) cache

» Very fast if all threads within a warp read the same address
If the address is cached, throughput of constant cache
If not cached, throughput of device memory

» |f different threads read different addresses, the accesses
are serialized

« Example use: stencil coefficients

SM (Streaming Multiprocesor) SM
Registers Regs.
Shared 1 Read
memory<= ache only

l  E— i
!

Cache (L2)

l

Global Memory
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To sense amps the future

DRAM Core Array Organization Example of a very small (8x2-bit) DRAM Core Array
« each DRAM core array has about 16M bits « each bit is stored in a tiny capacitor made of one transistor
» each bit is stored in a tiny capacitor made
of one transistor
D1
Row Row Memory Cell
Address | Decoder Core Array |
i v V V
9
Sense Amps v WV Off-chip Data
e
1 A cell in the core array Reading from a cell |nI
Column Latches E the core arrayisa !
Wide bus | o T > very slow process !
Column Viux 1|8 HpnE - DDR3/GDDR4: Core |
Address Ak A very small speed = % interface |
Narrow bus | T : P 8 I
| © = capacitance that speed !
Off-chip Data ! stores a data bit likely to be worse in i
|
I |

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 129
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DRAM Bursting
 For DDR{2,3,...} SDRAM the cores are clocked at 1/N speed of the interface

 DRAM Burst means to load (N x interface width) of DRAM bits from the same row at once to an internal buffer, then
transfer in N steps at interface speed (i.e. DDR3/GDDRA4: buffer width = 8X interface width)

Address bits
* Modern DRAM systems are designed to always

to decoder _
bit be accessed in burst mode.
Core Array onsinte face » Burst bytes are transferred to the processor but
. accessdelay | - time discarded when accesses are not to sequential
v locations.
T T
Non-burst timing Multi-Bank
T T T [ Bank 0 Bank 1 Bank 3
Burst timing with single bank
I Bank 0
N Bank 1
I Bonk 2 " 7
I B ok 3 I\yw\vwl Iwwv\yl |\y\y\y\y|
Multi-Bank burst timing, reduced dead time T v T

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 130
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Memory Coalescing

« memory coalescing is important for effectively utilizing memory bandwidth in CUDA
* its origin in DRAM burst

 for good performance CUDA memory access is coalesced

DRAM Burst — A System View
« Each address space is partitioned into burst sections

 Whenever a location is accessed, all other locations in the same section are also delivered to the processor
« Basic example:

« a 16-byte address space, 4-byte burst sections

 In practice, we have at least 4GB address space, burst section sizes of 128-bytes or more

Burst section Burst section Burst section Burst section

- E B R R e

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/
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Programmer View
is optional when
used with , or Host
reside in a
that reside in global
memory
Host CI.:U
¢ with |- »
memory cache

Variable declaration

__device__ _ shared_
__device
__device__ __ constant__

(Device) Grid

Block (0,0,0) Block (0,0,1)

Registers Registers Registers Registers
Thread 0,0,0 Thread 0,0,1 Thread 0,0,0 Thread 0,0,1
AL I I AL AL I I AL
Shared memory/ Shared memory/

L1 cache L1 cache
Cache (L2)

K 2 vi 1w L 4|
Global Memory
* v - +*
Constant Memory

Memory Scope Lifetime
int LocalVar; register thread thread
int SharedVar; shared block block
int GlobalVar; global grid application
int ConstantVar; constant grid application
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Memory Coalescing Un-coalesced Accesses

« when all threads of a warp execute a load instruction, if « When the accessed locations spread across burst
all accessed locations fall into the same burst section, section boundaries:
only one DRAM request will be made and the access is « Coalescing fails

fully coalesced. » Multiple DRAM requests are made

« The access is not fully coalesced.

How to judgg if an access is coalesc_:ed? _ _ « Some of the bytes accessed and transferred are
« Accesses in a warp are to consecutive locations if the not used by the threads

index in an array access is in the form of

» AJ(expression with terms independent of threadldx.x) +
threadldx.x];

Coalesced Loads Coalesced Loads Un-coalesced Loads Un-coalesced Loads
To T4 Ty T3 To T4 Ty T3 To T4 T, Ts To T4 Ty T3

(NINERZEEKE 4 5 6 7 8 9 10 11 12 13 14 15 (N EZEEKE 4 5 6 7 8 9 10 11 12 13 14 15

Burst section Burst section Burst section Burst section Burst section Burst section Burst section Burst section

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/
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Cache lines and Sectors

* Moving data between L1, L2 and DRAM

128-Byte alignment

v
Sector 0 Sector 1 Sector 2 Sector 3
+0 +32 +64 +96 +128
— _
——

128 Byte cache line

cudaDeviceSetLimit (cudaLimitMaxL2FetchGranularity, 32)

Memory access granularity
« 32 Bytes — 1 sector
« for Maxwell and Pascal

 Volta architecture
64 Bytes

e 2 sectors is default — second sector is
prefetched

 Ampere architecture

« granularity can be set to
« 32,64 and 128 Bytes

Cache line size
« 128 Bytes — made of 4 sectors

Cache management granularity
* 1 cache line

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf

Courtesy © 2012, NVIDIA
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addresses from a warp Scenario 1:
i i i i i i «  Warp requests 32 aligned,
[“sector | | | | | | | I | consecutive 4-byte words
sector [ T T T 1

Addresses fall within 4 sectors
« Warp needs 128 bytes

* 128 bytes move across the bus
« Bus utilization: 100%

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

addresses from a warp Scenario 2:
% 2{1 «  Warp requests 32 aligned,
Cew] T T e [ [ [ [ [ ] |, Permuledabytewords

Addresses fall within 4 sectors
« Warp needs 128 bytes

* 128 bytes move across the bus
« Bus utilization: 100%

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Courtesy © 2012, NVIDIA
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addresses from a warp Scenario 3:

M « All threads in a warp request the
[“sector | | | | [ | | | | | | I | same 4-byte word

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

Addresses fall within 4 sectors
« Warp needs 4 bytes

« 32 bytes move across the bus
» Bus utilization: 12.5%

addresses from a warp Scenario 4:
M w «  Warp requests 32 scattered 4-byte
Eeser] [ [ [ e [ [ ] words

Addresses fall within 4 sectors

« Warp needs 128 bytes

« N*32 bytes move across the bus
« Bus utilization: 128 / (N*32)

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf Courtesy © 2012, NVIDIA
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addresses from a warp Scenario 5:
\1\\1\ \\ « Warp requests 32 unaligned,
Cemer] T [ I T T T T ], consecuiive dbyte words
= Addresses fall within 5 sectors
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses * Warp needs 128 bytes
* 160 bytes move across the bus
« Bus utilization: 80%
addresses from a warp 1 addresses from a warp 2 Scenario 6:

\1\\1\1 \1\1\\\1\1 \1\ « 2 Warps request 32 unaligned,
|

T I 5 S s S ) B =  consecutive 4-byte words
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 Addresses fall within 9 sectors
Memory addresses « 2 Warps need 256 bytes

« 288 or 320 bytes move across the
bus (depends on presence of data
in cache)

 Bus utilization: 88% or 80%

Courtesy © 2012, NVIDIA
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2D C Array in Linear Memory Space Two Access Patterns of Basic Matrix Multiplication
A B
= .

Thread 1 ‘ | AismXxn,
Mz Mzt M2 Mzs rea ’ (Ll_a Bisnxk
Mo Mas Msy Mas Thread 2 T

WIDTH
A[Row*n+i] B[i*k+Col]
i is the loop counter in the inner product loop of the kernel code
linearized order in increasing address Col = blockldx.x*blockDim.x + threadldx.x

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 138
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2D C Array in Linear Memory Space Two Access Patterns of Basic Matrix Multiplication
A B
= .

Thread 1 ‘ | AismXxn,
Mz Mzt M2 Mzs rea ’ (Ll_a Bisnxk
Mso M3 g Mz M333 Thread 2 L

WIDTH
A[Row*n+i] B[i*k+Col]
i is the loop counter in the inner product loop of the kernel code
linearized order in increasing address Col = blockldx.x*blockDim.x + threadldx.x

Matrix B accesses are coalesced

Load iteration 0 Load iteration 1
| To T, T, T|[To Th T, Ts|

M1

CIRIERREPRRE R Bio Bii Biy, Bisz Byo By By, Bys B3g B3y B3, Bss

»

Access
direction in
kernel code

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 139
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2D C Array in Linear Memory Space Two Access Patterns of Basic Matrix Multiplication
A B
= .
Thread 1 ‘ | AismXxn,
Moo Moy My My 3 rea ’ (Ll_a Bisn x Kk
Mso M3z 1 Mz Mss Thread 2 I
WIDTH
A[Row*n+i] B[i*k+Col]
i is the loop counter in the inner product loop of the kernel code
linearized order in increasing address Col = blockldx.x*blockDim.x + threadldx.x
Matrix B accesses are coalesced Matrix A Accesses are Not Coalesced
Load iteration O Load iteration 1 - - T T T
T, ., T, L|[T, T, T, T Load iteration 1 *o . 42 ‘3

Nr 1 1 1 Load iteration O|¥J i T, T, | T, | |

ORISR EPRIEEN Bio Bia Bip Bis Byo Byi By, Bys Bsg Bsi Bsy Bss Ao |Ao,1| Ao

»

Access Access  FENINHINAINS
direction in direction in
Az,o A2,1 Az,z A2,3
kernel code kernel code

Azo A3 Az Ass

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 140
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* 05 matrix sum/<lang>/Task/matrix sum.<ext>

. . YOw sums
* Sum of values in a matrix -

- -
* Ineachrow (matrix sum each row kernel) ::|_|__|_i i i i i i i i i i i i i:l| ||
* Ineach column (matrix_sum each col kernel) T i —
 Complete the TODO task IRARA - —
* Implement the second kernel [T 1 «
e Think about the memory access pattern T 1 . O
* Do not think about each thread individually, think about the I i a
threadblock (or rather warp) as a whole - g -
« Beware C vs Fortran conventions for storing a matrix in memory I | B
* Row-major vs column-major order e —
Correctioutput (C+): I I I
col sums
Summation time in each row: 19.320 ms -
Summation time in each column: 7.801 ms

Using coalesced memory accesses was 2.48 times faster

https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf 142
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Special type of memory whose contents are explicitly
defined and used only in the kernel source code

» one independent chunk in each SM

« accessed at much higher speed (in both latency
and throughput) than global memory

» scope of access and sharing — all threads in a
block

+ lifetime — thread block, contents will disappear after
the corresponding thread finishes terminates
execution

» accessed by memory load/store instructions
» a form of scratchpad memory in computer architecture

(Device) Grid
Block (0,0,0)

Registers Registers
Thread 0,0,0 Thread 0,0,1
V' V'

Shared memory/ \
L1 cache

Cache (L2)
S 2 S 2

Block (0,0,1)

Registers Registers
Thread 0,0,0 Thread 0,0,1
V' V'

Shared memory/ \
L1 cache

Global Memory
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Performance benefits compared to DRAM:
« 20-40x lower latency

« ~15x higher bandwidth

» accessed at 4-byte granularity

» Global Memory granularity is 32 Bytes

Ampere generation shared memory + L1 cache
 GA102 — 128 KB (used by A40 - mainly for graphics)
e Configurable up to 100 KB
« GA100 - 192 KB (used by A100 - HPC)
e Configurable up to 164 KB

Organization
« organized in 32 banks, each 4 Bytes wide
» bandwidth: 4 Bytes per bank per clock per SM
» 128 Bytes per clk per SM
* successive 4-byte words go to successive banks

(Device) Grid
Block (0,0,0)

Registers Registers
Thread 0,0,0 Thread 0,0,1
V' V'

Shared memory/ \
L1 cache

Cache (L2)
S 2 S 2

Block (0,0,1)
Registers Registers
Thread 0,0,0 Thread 0,0,1
V' V'

Shared memory/ \
L1 cache

Global Memory

Bank index computation examples:

* (4B word index) % 32

* ((1B word index) /4 ) % 32

« 8B word spans two successive banks
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Logical View of Shared Memory banks

10

11

12

13

14

_____________________________________________________________

Bank Bank Bank Bank

Banks Conflicts o 1 2 3
» Abank conflict occurs when, inside a warp:

» 2 or more threads access within different 4B words in the same bank

» Think: 2 or more threads access different “rows” in the same bank
» N-way bank conflict: N threads in a warp conflict

* Increases latency

« Worst case: 32-way conflict — 31 replays

« Each replay adds a few cycles of latency
* There is no bank conflict if:

» Several threads access the same 4-byte word

» Several threads access different bytes of the same 4-byte word

30 | 31

_________

Bank Bank
30 31

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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No Bank Conflict

TO T1 T2 T3 T4 T5 T6 T7 T8 TOTIOTUTRTI3T 14

Byte addresses: 0 ! 41 8|12 '16‘ 201241281321 36 '40

44

60

128 132 136 140 144 148 152 156

32 | 33

256 260 264 270

— A A A

Bank Bank Bank Bank
0 1 2 3

T30 T31

1200 1241128

\ 4

\ 4

30

31

248 252 256

276 380 384

Bank

30

Bank

31

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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No Bank Conflict

TOT1 T2 T3 T4 T5 T6 T7 T8 TOTWOTUTRTIBT T30T31
Byte addresses: 0 4 8 % 161 20| 24 8 36140 44| 48] 52] 56] 60 120] 124] 128
\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4
0 1 2 3 4 5 6 7 8 9 1011|112 ] 13| 14 30 | 31
128 132 136 140 144 148 152 156 248 252 256
32 | 33
256 260 264 270 276 380 384
— A A A
Bank Bank Bank Bank Bank Bank
0 1 2 3 30 31

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf 148
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No Bank Conflict

TO T1 T2 T3 T4 T5 T6 T7 T8 TOTIOTUTRTI3T 14

\

Byte addresses: 0"4 8 12] 16y 20

\ 4

/

24

3 32Y¥36 40}

44

60

\ 4
o|l1]2]3/4

6 7

8\

9

10

128 132 136 %144 148

\

32 | 33

N\s2 156
AN

256 260 264 270

\

— A A A

Bank Bank Bank Bank
0 1 2 3

T30 T31

1200 1241128

\ 4

\ 4

30

31

248 252 256

276 380 384

Bank

30

Bank

31

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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No Bank Conflict

TOT1 T2 T3 T4 T5 T6 T7 T8 TOTWOTUTRTIBT T30T31
Byte addresses: 0 4 8 12 16 0 24\/28 32" 36" 40 44 4 52 }/56 60 120"124"128
0 1 2 3 4 5 6 7 8 9 1011|112 ] 13| 14 30 | 31
128 132 136 140 144 148 152 156 248 252 256
32 | 33
256 260 264 270 276 380 384
— A A A
Bank Bank Bank Bank Bank Bank
0 1 2 3 30 31

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf 150



CUDA Memories
Shared Memory in CUDA

. SUPERCOMPUTING
SCtrain i
PARTNERSHIP

2-way Bank Conflict

TO T1 T2 T3 T4 T5 T6 T7 T8 TOTIOTUTRTI3T 14

Byte addresses: 0 8 |12 '16‘ 201241281321 36 '40

P
<
b
<
P
<
P
<
P
<
P

\ 4

44

60

128 132\ 136 140 144 148 152 156

32

256 260 264 270

— A A A

Bank Bank Bank Bank
0 1 2 3

T30 T31

1200 1241128

\ 4

\ 4

30

31

248 252 256

276 380 384

Bank

30

Bank

31

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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2-way Bank Conflict

TO T1 T2 T3 T4 T5 T6 T7 T8 TOTIOTUTRTI3T 14

Byte addresses: 0 12 | 161201241 28] 32] 36 '40

b
<
P
<
P
<
P
<
P

\ 4

44

60

32 [ 133

256 260y264 270

— A A A

Bank Bank Bank Bank
0 1 2 3

T30 T31

1200 1241128

\ 4

\ 4

30

31

248 252 256

276 380 384

Bank

30

Bank

31

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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3-way Bank Conflict

TO T1 T2 T3 T4 T5 T6 T7 T8 TOTIOTUTRTI3T 14

12116 20'24% 32136 40}

Byte addresses: 0

<
P
<

44

60

128 13p j136 140 144 148 152 156

32

256 260)264 270

— A A A

Bank Bank Bank Bank
0 1 2 3

T30 T31

1200 1241128

\ 4

\ 4

30

31

248 252 256

276 380 384

Bank

30

Bank

31

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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8B words, No Conflicts

TO T1 T2 T3 T4 T5 T6 T7 T 15
Phase 1
Byte addresses: 0 ! 4 8 l 12 16 l 20 24 l 28 32 1 36 40" 44 48" 52 56" 60 120"124 128
0=->0 1=-p1 2 =2 3=3 4 =>4 5=»5 6 =6 7 15=»15
128 132 136 140 144 148 152 156 248 252 256
16=>16 = - — = — — =t
a A A} Ar A S A A A}
256|260 2641270 2761380 384
-3y A A 3 A
Bank Bank Bgnk Bank B4dnk Bank
(] 1 3 10 31
Phase 2
T 16 T 17 T 18 T 19 T 20 T 21 T2 T 23 T 31

8B words are accessed
in 2 phases:

Phase 1: Process
addresses of the
first 16 threads in
a warp

Phase 2: Process
addresses of the
second 16 threads
in a warp

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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Phase 1

Byte addresses:

Phase 1

T0 T1

0
\ 4

8B words, 2-way Conflicts
T2 T3 T4 T5 T6 T7

12 16120 24128 32136 40144 48152 56] 60

2561260 264]270

A A3 AN

Bank Bank Bgnk
(] 1

T 16 T 17

Bank
3

T18 T19 T20 T21 T2 T23

T 15

120] 124128
15=p15

248 252 256
-1

1
276|380 384

B4dnk Bank
10 31

T 31

8B words are accessed
in 2 phases:

Phase 1: Process
addresses of the
first 16 threads in
a warp

Phase 2: Process
addresses of the
second 16 threads
in a warp

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
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Case Study: Matrix Transpose Case Study: Matrix Transpose

32x32 SMEM array (.e.g. __shared__ float sm[32][32]) Solution: add a column for padding: 32x33

Warp accesses a row : No conflict (-e.g. __shared__ float sm[32][33])

) Warp accesses a row or a column: no conflict
Warp accesses a column : 32-way conflict

Threads: Threads:

0 1 2 31 padding

Number indentifies which warp is accessing data Number indentifies which warp is accessing data

Color indicates in which bank data resides 31 Color indicates in which bank data resides 2
L J el L ]
L J L J
Bank 0 °l 3 Bank 0 1| 2 |° Speedup
[ ] @
Bank 1 | a1 Bank 1 o | 1+ N ° 1.3x
"" ) a [ X N ] 7"' A L X N ]
Bank 31 - B Bank 31
e| 31 31 31
s L

Source NVIDIA: https://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf 156
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Declaration:

void CUDA Kernel(unsigned char * in,
unsigned char * out, int w, int h)

{

__shared__ float
ds_in[TILE WIDTH][TILE WIDTH];

(Device) Grid
Block (0,0,0)

Registers Registers
Thread 0,0,0 Thread 0,0,1
' V'S

Shared memory/ \
L1 cache

Cache (L2)
S 2 S 2

Block (0,0,1)

Registers Registers
Thread 0,0,0 Thread 0,0,1
V' A

Shared memory/ \
L1 cache

Global Memory

159
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Matrix Multiplication — Memory access problem PARTNERSHIP

2D C Array in Linear Memory Space Two Access Patterns of Basic Matrix Multiplication
A B
= .
Thread 1 ‘ | AismXxn,
Moo Moy My My 3 rea ’ (Ll_a Bisn x Kk
Mso M3z 1 Mz Mss Thread 2 I
WIDTH
A[Row*n+i] B[i*k+Col]
i is the loop counter in the inner product loop of the kernel code
linearized order in increasing address Col = blockldx.x*blockDim.x + threadldx.x
Matrix B accesses are coalesced Matrix A Accesses are Not Coalesced
Load iteration O Load iteration 1 - - T T T
T, ., T, L|[T, T, T, T Load iteration 1 *o . 42 ‘3

Nr 1 1 1 Load iteration O|¥J i T, T, | T, | |

IV RPN Bio Bii Bix Bis Boo Byi Byy Bys Bsg B3y Bs, Bss Ao |Ao,1| Ao

»

Access
. . . A1,0 A1,1 A1,2 A1,3
direction in direction in
Az,o A2,1 Az,z A2,3
kernel code kernel code

Azo A3 Az Ass

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 160
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Global Memory

24 reads from Global Memory

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 161
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Global Memory

4 reads from Global Memory

Shared Memory 8 reads from Shared Memory

Thread O Thread 1

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 162
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CUDA Memories :
Tiling Technique SCtraIﬂ

Global Memory

4 reads from Global Memory

8 reads from Shared Memory

Thread O Thread 1

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 163
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CUDA Memories :
Tiling Technique SCtraIﬂ

Global Memory

4 reads from Global Memory

Shared Memory 8 reads from Shared Memory

Thread O Thread 1

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 164
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Tiling needs synchronization

Global Memory

Good: when threads have similar access timing

Thread 1 Time\/ [ >

Shared Memory

Thread 2 T2 ->
Memory

Thread 0 Thread 1 Thread 1 _ 5
Thread 2

Time
Bad: when threads have very different timing

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 165
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Tiling needs synchronization

SUPERCOMPUTING
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PARTNERSHIP

Global Memory

Time

v

Shared Memory Thread 0

Thread 1
Thread 2

Thread 3
Thread 4

Thread O Thread 1

Thread N-3
Thread N-2 |

Thread N-1

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 166
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Tiling needs synchronization

Global Memory

Shared Memory

Thread O Thread 1

Work on Work on
data data

Global Memory

Sync

Tiling Techniques step by step

* |dentify a tile of global memory contents that are
accessed by multiple threads

» Load the tile from global memory into on-chip
memory

» Use barrier synchronization to make sure that all
threads are ready to start the phase

» Have the multiple threads to access their data from
the on-chip memory

* Use barrier synchronization to make sure that all
threads have completed the current phase

 Move on to the next tile

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 167
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Tiling needs synchronization

Global Memory

Shared Memory

Thread O Thread 1

Work on Work on
data data

Global Memory

Sync

Barrier Synchronization
» CUDA call to synchronize all threads in a block

__syncthreads ()

« all threads in the same block must reach the
__syncthreads () before any of the them can
move on

» best used to coordinate the phased execution of a
tiled algorithms

* to ensure that all elements of a tile are loaded

at the beginning of a phase

* to ensure that all elements of a tile are

consumed at the end of a phase

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 168
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Tiled Matrix Multiplication PARTNERSHIP
Global Memory is not fast enough !!! 1 Col
N
Example: Matrix multiplication from Global Memory
 all threads access global memory for their input matrix elements T
« two memory accesses (4 bytes) per two floating-point Thread Q
operations (multiplication and addition) =
« algorithm needs 4B for every FLOP
 Assume a GPU with Thread 1
- peak floating-point rate M P
« 4B~ = 6,400 GB/s required to achieve peak Thread
FLOPS rating block T
- 600 GB/s DRAM bandwidth Thread g =
« the 600 GB/s memory bandwidth limits the execution ROWI =
at 150 GFLOPS J W -
WIDTH WIDTH v
« This limits the execution rate to 9.3% (150/1600) of the peak
floating-point execution rate of the device! for (int k = 0; k < Width; ++k) {
* Need to drastically cut down memory accesses to get close Pvalue += M[Row*Width+k] * N[k*Width+Col] ;
to the1,600 GFLOPS }

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 169



https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories S C ' SUPERCOMPUTING
. . . . . KNOWLEDGE
Tiled Matrix Multiplicationv tramn laaes
A Basic Matrix Multiplication | Col
A
__global ( , , N
’ ) T
{ =
Thread g
Row blockIdx.y*blockDim.y+threadIdx.y;
Col blockIdx.x*blockDim.x+threadIdx.x; v
T A
M P =
((Row < Width) (Col < Width)) { Q
Pvalue ; Thread §I
block 5 T
Thread 9 E
( k . k < width; ++k) { ROWI m =
Pvalue M[Row*Width+k]*N[k*Width+Col]; BLOCK‘WIDTH’
) _
P[Row*Width+Col] Pvalue; v
y ’ ) WIDTH WIDTH ]

Solution — use tiling to reuse data in Shared Memory

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 170



https://www.nvidia.com/en-us/training/teaching-kits/

CUDA Memories
Tiled Matrix Multiplication

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

SCtrain

A Basic Matrix Multiplication

__global ( ’
4
{
Row blockIdx.y*blockDim.y+threadIdx.y;
Col blockIdx.x*blockDim.x+threadIdx.x;
( (Row Width) (Col wWidth)) {
Pvalue ;
( k ; k Width; k) {
Pvalue M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] Pvalue;
}
}

BLOCK WIDTH = 2
Block(0,1)

\ Thr?ad(0,1) /

Thread(0,0) — v
(©.0) sl:’o,o Po1 Po2|Pogs

Thread(1,0) \$P 5 p.|p
Thread(1,1) 011 T2 13

I:)2,0 P2,1 I:)2,2 P2,3

Pso|P31|Ps2|Pss

Block(1,0) Block(1,1)

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 171
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A Basic Matrix Multiplication

__global ( ’
4
{
Row blockIdx.y*blockDim.y+threadIdx.y;
Col blockIdx.x*blockDim.x+threadIdx.x;
( (Row Width) (Col wWidth)) {
Pvalue ;
( k ; k Width; k) {
Pvalue M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] Pvalue;
}
}

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 172
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A Basic Matrix Multiplication

__global ( ’
4
{
Row blockIdx.y*blockDim.y+threadIdx.y;
Col blockIdx.x*blockDim.x+threadIdx.x;
( (Row Width) (Col wWidth)) {
Pvalue ;
( k ; k Width; k) {
Pvalue M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] Pvalue;
}
}

~ —

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 173
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Tiled Matrix Multiplication tra 1) |Faenereie
Data access pattern l Col
» each thread - a row of M and a column of N N 4
» each thread block — a strip of M and a strip of N
=
Thread g
M P
L
Thread E
Row =
) WIDTH A WIDTH ]

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 174
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Tiled Matrix Multiplication tra 1§} i
Data access pattern { Col
« each thread - a row of M and a column of N N i
» each thread block — a strip of M and a strip of N
EE— . T
-
Tiled Matrix Multiplication Q
* break up the execution of each thread into phases I N =
* so that the data accesses by the thread block in each
phase are focused on one tile of M and one tile of N
- the tile is of BLOCK_SIZE elements in each dimension M
M P
| :
[
_— o
Row ' ' =
) WIDTH A WIDTH .

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 175
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Data access pattern

Thread II/IO’O
(0,0) MSo.
Thread YIO”
(0,1) MSo -
Thread II/I”)
(1,0) MS;
Thread YI“
(1,1) MS; ;

Phase 0 Load for Block (0,0)

No,o
! Shared
NS o Memory
No,1
!
NSo1 >

’ Mo,o | Mo,1| Mo2 | Mo 3 Mo, Mon
N1 B
} Mio| M1 1Mo M5 Mo Mm
NS’]’O
N1 1
!
NS1’1

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/
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CUDA Memories

Tiled Matrix Multiplication Moo | No
N1,0 N11
Data access pattern
Phase 0 Use for Block (0,0) N2o | N2
(iteration 0)
Phase 0 N30 | N3 1
Thread l lNOO PValueg += NooI No 1|
(0,0) MS0,0"NSo,0 +—
MSo,o NSo,o ’ ’ N N
1,01 1,1
Thread YIO” T(“ PValueg; +=
(0,1) MS,0*"NSo 1
MS NS ’ ! -
v 0,1 \ 0,1 Moo M01 M02 M03 M0,0 M01 I:)OO| fO']I
1,0 1,0 — /T
(T1h(r§ad IR U i O Mio MMz [ Miaf  [Myg[Mig] [P | P1s
’ MS1’0 NS1’0 1,0 0,0 .
Thread YI“ T“ PValue; ; +=
(1a1) MS1’1 NS1’1 MS1,0 NSO,1

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 177
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CUDA Memories

Tiled Matrix Multiplication Noo | No.
N1,0 N11
Data access pattern
Phase 0 Use for Block (0,0) N2o | Na
(iteration 1)
Phase 0 N3 | N3
Thread Noo  pvalueg o +=
i | 0.0 No,o | No,1
(0,0) MS. - NS MS0,0"NSp,0tMSq,1* NS+
0,0 0,0 |N1,o| N4
Thread YIO” T(“ PValueg; +=
0.1)  us.. NS.. MSo0NSo1+MSos"NS, — ’
v = N = Mo,o | Mo,1|Mo,2| Mo 3 Mo,0 | Mo,1 Po,o| I:’o1|
1,0 1,0 — > v _ ¥V
Picac ! ! PVaIu*e1,o+ . Mio M1 1]Mq2[ M3 Mio| My P10 [ P11
Thread YI“ T“ PValue, 4 +=
(1,1) MS,; NS MS10*NSp,1+MS1 1* NS 4

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 178
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CUDA Memories
Tiled Matrix Multiplication Noo | Nos

Data access pattern

Phase 1 Load for Block (0,0) N2o [|N2,1

Thread =
00 Y. Nzgf N |
Thread Mos Ny
O | s | e _
M - N - Moo | Mo 1Mo 2| Mg 3 Mo.2 Mos Po.o | Po1
12 3.0 =
;I;h(r)e)ad ! l Mio My |Mio[Mia]  [Mip| M1 Pio| P
’ MS»],O NS1’0
Thread 13 N
(1.1) i} J
, MS1’1 NS1’1

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 179
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Tiled Matrix Multiplication Noo | No.
N1,0 N11
Data access pattern
Phase 1 Use for Block (0,0) N2o | Na
(iteration 0)
N3,0 N3,1
Thread N20  pyalueg o +=
l ! e Nz,ol N2,1|
(0,0) MSg,0"NSq0
MS0,0 NSO’O ’ ’ N N
3,00 3.1
Thread ?0’3 T“ PValueg; +=
(0,1) MSg,0"NSq,1
MSy, NS ’ ’ ¥
v o \ O Moo | Mo,1 | Mo2 | Mo 3 Moo | Mg 3 Po,ol fo1|
1,2 3,0 — > v _ ¥V
;I-,]hge)ad ! ! Eﬂ\éalufh]g+ Mio| My 1|M2| My Mo M5 P10 !P1,1
’ MS1’0 NS1’0 1,0 0,0 .
Thread t/'m T“ PValue, 4 +=
(1a1) MS1’1 NS1’1 MS1,0 NSO,1

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 180
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Tiled Matrix Multiplication Noo | No.
N1,0 N11
Data access pattern
Phase 1 Use for Block (0,0) N2o | Na
(iteration 1)
N30 | N3 1
Thread i 1\120 PValueg o += N, o | N
(0,0) MSoo NS, MS0,0"NSg,0+MSy,1* NS+ o | |
’ ’ N3,0/| /N3, 1
Moz Nz _ |
Thread | ! | ! PValueg 1 +=
(0,1) MSo; NS MS0,0"NSp,1+MSg 1" NS 1 — ’
v ! \ ’ Mo,0 | Mo,1]Mo2| Mo 3 Mo,2 | Mo 3 Po,o| fo,1|
1,2 3,0 — > v _ ¥V
Picac ! ! PVaIu*e1,o+ . Mio M1 1]Mq2[ M3 Mi2| M3 P10 [ P11
Thread T/'m T“ PValue, 4 +=
(1,1) MS,; NS MS10*NSp,1+MS1 1* NS 4

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/ 181
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IVIO,O

NO,O

Mo,2

N2 o

Thread | | PValueg += Thread | | PValueg +=
(0,0) MSoo NSoo MS0,0"NSg,0+tMSg 1*"NS1 (0,0) MSoo NSoo MSg,0"NSg,0+tMSg 1*NS1
Thread II/I‘“ lNOJ PValueg ¢ += Thread ?0’3 T“ PValueg ¢ +=
(0,1) MSo: NSo: MS0,0"NSg,1+MSq 1*NS 4 (0,1) MSo: NSo: MSg,0"NSq,1+MSq 1" NS 4
Thread ll/h,o le PValues o += Thread Il/h’z 1\]3’0 PValues o +=
(1,0) MSio NSio MS10"NSg,0*MS+1"NS+ o (1,0) MSio NSio MS10"NSg,0*MS+1"NS+ o
Thread II/I“ lNM PValue, 4 += Thread ?1’3 T“ PValue, 4 +=
(1,1) MS;; NS;; MS1,0"NSg1+MS 1"NS 4 (1,1) MS;; NS MS1,0"NSg,1+MS 1"NS 4

Shared memory allows each value to be accessed by multiple threads.
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- : } Col
Loading Input Tile 0 of M and N (Phase 0)
« each thread loads an M element and an N element at N i
the same relative position as its P element
1 5
bx blockIdx.x; by blockIdx.y; S
tx threadIdx.x; ty threadIdx.y;
Row by blockDim.y ty; !
Col bx blockDim. x tx; A
M P
2D indexing for accessing Tile O:
M [Row] [tx] E
N [t Col —_— - =
[ty]l [ ] Row | =
) WIDTH B WIDTH .
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Loading Input Tile 1 of M and N (Phase 1)
» each thread loads an M element and an N element at
the same relative position as its P element

bx blockIdx.x; by blockIdx.y;
tx threadIdx . x; ty threadIdx.y;
Row by blockDim.y ty;

Col bx blockDim. x tx;

2D indexing for accessing Tile 1:

M [Row] [1*TILE WIDTH + tx]

N [1*TILE*WIDTH + ty] [Col] R om

. SUPERCOMPUTING
S ‘ tra ‘ n KNOWLEDGE
PARTNERSHIP
} Col
A
N
- T
[
Q
=
N
P
| :
-
i o
| | =
v
) WIDTH a WIDTH ]
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Loading Input Tile p of M and N (Phase 1)
» each thread loads an M element and an N element at
the same relative position as its P element

bx blockIdx.x; by blockIdx.y;
tx threadIdx . x; ty threadIdx.y;
Row by blockDim.y ty;

Col bx blockDim. x tx;

2D indexing for accessing Tile p:

M [Row] [P*TILE WIDTH + tx]

N [p*TILE*WIDTH + ty] [Col] R om

. SUPERCOMPUTING
S ‘ tra ‘ n KNOWLEDGE
PARTNERSHIP
} Col
A
N
- T
[
Q
=
N
P
| :
-
i o
| | =
v
) WIDTH R WIDTH ]
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Loading Input Tile p of M and N (Phase 1)
» each thread loads an M element and an N element at
the same relative position as its P element

bx blockIdx.x; by blockIdx.y;
tx threadIdx . x; ty threadIdx.y;
Row by blockDim.y ty;
Col bx blockDim. x tx;

2D indexing for accessing Tile p:

M [Row] [P*TILE WIDTH + tx]
N [p*TILE*WIDTH + ty] [Col]

1D indexing for accessing Tile p:

M [Row*Width + p*TILE WIDTH + tx]
N [(p*TILE WIDTH+ty)*Width + Col]

Row

. SUPERCOMPUTING
S ‘ tra ‘ n KNOWLEDGE
PARTNERSHIP
} Col
A
N
- T
[
Q
=
N
P
| :
-
i o
| | =
v
) WIDTH a WIDTH ]
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. L __global__ ( , , , Int )
Matrix Multiplication kernel
» two additional declaration of SM __shared ds M[TILE WIDTH][TILE WIDTH];
array ds_M a ds_N __shared ds N[TILE WIDTH][TILE WIDTH];
* Tiles of Mand N bx blockIdx.x; by blockIdx.y;
tx threadIdx.x; ty threadIdx.y;

Row by blockDim.y ty;
Col bx blockDim.x tx;

Pvalue 7
( p ; p < n/TILE WIDTH; p) {
ds M[ty][tx] M[Row*Width + p*TILE WIDTH+tx];
ds N[ty][tx] N[ (p*TILE WIDTH+ty)*Width + Col];
__syncthreads();
( i ; 1 < TILE WIDTH; i)
Pvalue ds M[ty][i] ds N[i][tx];
__synchthreads();
}
P[Row*Width+Col] Pvalue;

}
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i T __global ' '
Matrix Multiplication kernel
* loop defines the phases of the __shared ds M[TILE WIDTH][TILE WIDTH];

mat. mult. kernel __shared ds N[TILE WIDTH][TILE WIDTH];
- each iteration corresponds bx = blockIdx.x; by = blockIdx.y:
to a phase tx threadIdx.x; ty threadIdx.y;

* P variable — indicates the

number of the current Row = by * blockDim.y

Col bx blockDim. x

, Int )

phase
Pvalue ;

« each thread loads one element

of M and N ( P ; P < n/TILE WIDTH; p) {

ds M[ty][tx] M[Row*Width + p*TILE WIDTH+tx];

* these elements are moved to ds N[ty][tx] = N[(p*TILE WIDTH+ty)*Width + Col];

SM arrays ds_M and ds_N __syncthreads();

_ ( i ; 1 < TILE WIDTH; i)

° _syncthreads() is needed Pvalue ds M[ty][i] * ds N[i][tx];

because threads can execute in

different timings \ __synchthreads();

P[Row*Width+Col] Pvalue;

}
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. N __global _ ( , , , Int )
Matrix Multiplication kernel
* selected loop performs the __shared ds M[TILE WIDTH][TILE WIDTH];
executlotn ?f the tI)nnerdprOdtlriCt in __shared ds N[TILE WIDTH][TILE WIDTH];
a current phase based on the . _
content of the SM bx blockIdx.x; by blockIdx.y;
tx threadIdx.x; ty threadIdx.y;

Row by blockDim.y ty;
Col bx blockDim.x tx;
Pvalue ;

* _syncthreads()

* makes sure all threads
finished the calculation

* and no threads need _ _
content of SM anymore ( P ; P < n/TILE WIDTH; ++p) {

- after the sync, we can
rewrite the content of the
SM with new data for next

ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
ds N[ty][tx] = N[(p*TILE WIDTH+ty)*Width + Col];

phase __syncthreads();
( i ; i < TILE WIDTH; ++i)
* Finally, each thread writes its AL 2 ez (L) @ ML e -
output value in the P matrix __synchthreads();
}
P[Row*Width+Col] Pvalue;

}
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Performance considerations
« Each thread block should have many threads

* TILE_WIDTH of 16 gives 16*16 = 256 threads
« TILE_WIDTH of 32 gives 32*32 = 1024 threads

« for TILE_WIDTH = 16,
» in each phase, each block performs
« 2*256 = 512 float loads from global memory for
« 256 * (2*16) = 8,192 mul/add operations
+ 16 floating-point operations for each memory load

« for TILE_WIDTH = 32,
» in each phase, each block performs
« 2%1024 = 2048 float loads from global memory for
« 1024 * (2*32) = 65,536 mul/add operations
+ 32 floating-point operation for each memory load
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Performance considerations Shared Memory impact
« Each thread block should have many threads * For example, let’s have an SM with 16KB shared memory
 TILE_WIDTH of 16 gives 16*16 = 256 threads - Shared memory size is implementation dependent!
 TILE_WIDTH of 32 gives 32*32 = 1024 threads * GA102 — up to 100kB per SM
* GA100 — up to 164kB per SM
« for TILE_WIDTH = 16, * For TILE_WIDTH = 16,
* in each phase, each block performs « each thread block uses 2*16*16*4B = 2KB of shared
« 2*256 = 512 float loads from global memory for memory
. 256 * (2*16) = 8,192 mul/add operations « for 16KB shared memory per SM, one SM
- 16 floating-point operations for each memory load *can have up to 8 thread blocks executing
 this allows up to 8*512 = 4,096 pending loads
- for TILE WIDTH = 32, « 2 per thread, 256 threads per block
* in each phase, each block performs * For TILE_WIDTH = 32
- 2*1024 = 2048 float loads from global memory for + each thread block uses 2*32*32*4B = 8KB of shared
« 1024 * (2*32) = 65,536 mul/add operations memory _
. 32 floating-point operation for each memory load . ;)irr:]eeSM can have 2 thread blocks active at the same

* one have to check maximum number of threads per
block (1024, 1536 or 2048) architecture dependent
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Tiled Matrix Multiplication

Matrices of Arbitrary Size Noo|[No.1 | No
N1,0 N1,1 N12
Data access pattern — I -
Phase 0 Load for Block (0,0) N2 of [[N2 4 | N2
No,o/| No,1
N1,0 N11
>
Moo | Mg,1| Mo 2 Mo o Nm Po,o | Po,1| Po2
>
|VI10 IV|11 M12 I\/|1,0 M11 I:’10 I::.11 I:’12
|VIZO IV|21 M2,2 I:’20 I::.21 I:’22
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Tiled Matrix Multiplication
Matrices of Arbitrary Size Noo | No.t | Nog

Data access pattern
Phase 0 Use for Block (0,0) N2o [ Naoq [ Noo

(iteration 0)
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Tiled Matrix Multiplication
Matrices of Arbitrary Size Noo | No.t | Nog

Data access pattern
Phase 0 Use for Block (0,0) N2o [ Naoq [ Noo

(iteration 1)
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Matrices of Arbitrary Size Noo | No.t | Nog

Basic kernel limitations
- the tiled matrix multiplication kernel can handle only Phase 1 Load for Block (0,0) N2o [iN2,1 | N22

* square matrices
« dimensions are multiples of the TILE_ WIDTH

» real applications need to handle arbitrary sized matrices /’

These threads need special N2,/ N,
treatment in loading M and N tile
Po,o | Po1 | Po2
Pio|P11]P12
P2o | P21] P22
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Matrices of Arbitrary Size Noo | No.t | Nog

Solving problem during loading data into tile
- when a thread is to load an input element Phase 1 Load for Block (0,0) N2o [iN2,1 [ N22

- testif it is in the valid index range
- if valid, proceed to load
- else, do not load, and write a 0 to SM

- Rationale: a 0 value will ensure that that the multiply- &0 &1
add step does not affect the final value of the output 0 0
element
» the condition tested for loading input elements is
different from the test for calculating output P element Poo | Po1|Pos
- athread that does not calculate valid P element can still Pio|P11] P12
participate in loading input tile elements
P2o | P21 | P22
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Tiled Matrix Multiplication

I I I N N N
Matrices of Arbitrary Size
Nyo|N11|Nq2
Tile processing
- if SM buffers are loaded correctly, the Tile processing Phase 1 Use for Block (0,0) N2o | N21 | N22
remains unaffected (iteration 0)
N2,o/||N2,1
0 0
S
Mo,o | Mo,1| Mo,2 Mgo| O Po,o_fm Po,2
>
Mo | Mq4[My Mi5| 0 P10 !P“ P12
Mz | M2 1[ M2 P20 | P21 | P22
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Tiled Matrix Multiplication

Matrices of Arbitrary Size Noo| No1 | No
_ _ Nyo|N11|Nq2
Tile processing
- if SM buffers are loaded correctly, the Tile processing Phase 1 Use for Block (0,0) N2o | N21 | N22
remains unaffected (iteration 1)
N2o | N1
0 0
) —r—
Mo,o | Mo,1| Mo,2 Moo| O Po,o fo1 Po,2
>
Mo | Mq4[My Mi2| 0 P10 !P“ P12
Mz | M2 1[ M2 P20 | P21 | P22
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Loading Input Tile p of M
» each thread loads an M element and an N element at
» the same relative position as its P element

bx blockIdx.x; by blockIdx.y;
tx threadIdx . x; ty threadIdx.y;
Row by blockDim.y ty;
Col bx blockDim. x tx;

2D indexing for accessing Tile p: M
M [Row] [p*TILE WIDTH + tx]

1D indexing for accessing Tile p:

I
M [Row*Width + p*TILE WIDTH + tx] Row
Boundary condition - -
if (Row < Width) && (p*TILE WIDTH+tx < Width) WIDTH

 true: load M element
e else:use0
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Loading Input Tile p of N
» each thread loads an M element and an N element at
» the same relative position as its P element

bx blockIdx.x; by blockIdx.y;
tx threadIdx . x; ty threadIdx.y;
Row by blockDim.y ty;
Col bx blockDim. x tx;

2D indexing for accessing Tile p:
N [p*TILE*WIDTH + ty][Col]

1D indexing for accessing Tile p:

N [(p*TILE WIDTH+ty)*Width + Col]

Boundary condition

if (p*TILE WIDTH+ty < Width) && (Col< Width)
 true: load M element
e else:use0

} Col

WIDTH
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. global
Loading Elements to Shared T

Memory

___shared
___shared

bx blockIdx.x; by

tx threadIdx.x;

Row by blockDim.y
Col bx blockDim.x
Pvalue ;

(

ty;
tx;

4 4

ds M[TILE WIDTH][TILE WIDTH];
ds N[TILE WIDTH][TILE WIDTH];

blockIdx.y;
threadIdx.y;

, Int )

( P I ©)

ds M[ty][tx]
ds N[ty][tx]
__syncthreads();

M[Row*Width
N[ (t*TILE WIDTH+ty)*Width

n/TILE WIDTH; ++p) {

p*TILE WIDTH+tx];

Col];

( i ;i
Pvalue ds M[ty][1i]

__synchthreads();

}
P[Row*Width+Col]

}

Pvalue;

TILE WIDTH; i)
ds N[1][tx];
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Loading Elements to Shared

Memory ( p ; p < n/TILE WIDTH; ++p) {
* with boundary check ds M[ty][tx] = M[Row * Width + p * TILE WIDTH + tx];
ds N[ty][tx] = N[(p * TILE WIDTH + ty) * Width + Col];

__syncthreads();

( p ; p < (Width-1)/TILE WIDTH + 1; ++p) {

(Row < Width p * TILE WIDTH+tx < Width) {

ds M[ty][tx] = M[Row * Width + p * TILE WIDTH + tx];
} {

ds M[ty][tx] .0;
}

(p*TILE WIDTH+ty < Width Col < Width) {

ds N[ty][tx] = N[(p * TILE WIDTH + ty) * Width + Col];
} {

ds _N[ty][tx] .0;
}

__syncthreads();
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__global ( ’

Inner Product {

___shared
___shared

ds M[ty][tx]
ds N[ty][tx]

bx blockIdx.x; by
tx threadIdx.x; ty

blockIdx.y;
threadIdx.y;

Row by blockDim.y ty;
Col bx blockDim.x tx;
Pvalue ;

( p ; p < n/TILE WIDTH; p) {
M[Row*Width
N[ (t*TILE WIDTH+ty)*Width
syncthreads();

ds M[TILE WIDTH][TILE WIDTH];
ds N[TILE WIDTH][TILE WIDTH];

p*TILE WIDTH+tx];

Col];

, Int )

}

}

P[Row*Width+Col]

( i ; i < TILE WIDTH; i)
Pvalue ds M[ty][i] * ds N[i][tx];

synchthreads();

Pvalue;
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Inner Product — Before and

( i oo TILE WIDTH; i) {
After Pvalue ds M[ty][i] * ds N[i][tx];
}
__synchthreads();
}
P[Row*Width+Col] Pvalue;
}
(Row < Width Col Width) {
( i oo TILE WIDTH; i) {
Pvalue ds M[ty][i] ds N[i][tx];
}
__syncthreads();
}
(Row < Width Col Width)
P[Row*Width Col] Pvalue;
}
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Tiled Matrix Multiplication SCtrain

* 06 matrix multiplication/<lang>/Task/matrix multiplication.<ext>

« Matrix multiplication of two non-square matrices
* Finish the TODO tasks in kernels N
* Naive implementation
« Tiled implementation
« Compare the execution times

size k

Correct output: M P

Matrix multiplication naive seems OK
Matrix multiplication tiled seems OK

size_m

Time multiplication naive: XXXX.XXX ms

Time multiplication tiled: YYYY.-YYYy ms
Speedup is z.zz

A
v
A
v

size_k size_n
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Convolution

basic example for stencil computation pattern

an array operation where each output data
element is a weighted sum of a collection of
neighboring input elements

the weights used in the weighted sum calculation
are defined by an input mask array, commonly
referred to as the convolution kernel
» we will refer to these mask arrays as
convolution masks to avoid confusion.
» the value pattern of the mask array elements
defines the type of filtering done

Image Blur example is a special case where all
mask elements are of the same value and hard

coded into the source code.

N[O] N[1] N[2] N[3] N[4] N[5] NI6]
N 1 2 3 4 5 6 7
* * * * *
M[0] M[1] M[2] M[3] M[4]

M| 3 4 5 4 3

Tmp | 3 8 | 15 16 | 15

— 5 _
——

P 57
P[O] P[1] P[2] P[3] P[4] P[5] PI6]

P[2] = N[O]*M[O] + N[1]*M[1] + N[2]*M[2] + N[3]*M[3] + N[4]*M[4]
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Stencll S Ctra 18

Convolution

« basic example for stencil computation pattern N[Ol NI1]  N[2] N[3] N4l N3] NI6]

N 1 2 3 4 5 6 7

* an array operation where each output data * * * *’ *
element is a weighted sum of a collection of M[O] M1l Mi2] MI3] MI[4]
neighboring input elements M| 3 4 5 4 3

« the weights used in the weighted sum calculation - - - - -

are defined by an input mask array, commonly Tmp| 6 | 12 | 20 | 20 | 18
referred to as the convolution kernel \ 5 .
» we will refer to these mask arrays as —~

convolution masks to avoid confusion.

P 57 | 76
» the value pattern of the mask array elements
defines the type of filtering done PIO] PI1] P[2] P31 Pl4] P[]  Pl6]
 Image Blur example is a special case where all P[3] = N[1]*M[0] + N[2]*M[1] + N[3]*M[2] + N[4]*M[3] + N[5]*M[4]

mask elements are of the same value and hard
coded into the source code.
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SCtrain

Convolution

basic example for stencil computation pattern

an array operation where each output data
element is a weighted sum of a collection of
neighboring input elements

the weights used in the weighted sum calculation
are defined by an input mask array, commonly
referred to as the convolution kernel
» we will refer to these mask arrays as
convolution masks to avoid confusion.
» the value pattern of the mask array elements
defines the type of filtering done

Image Blur example is a special case where all
mask elements are of the same value and hard
coded into the source code.

N[O] N[1] N[2] N[3] N[4] N[5] N[6]

1 2 3 4 5 6 7

* * * * *
M[O] MI[1] M[2] MI[3] MI[4]

M| 3 4 5 4 3

Tmp | 9 16 | 25 | 24 | 21

— > _J
—~—
57 | 76 | 98

P[O] P[1] P[2] P[3] P[4 P[5] P[6]

P[4] = N[2]*M[O] + N[3]*M[1] + N[4]*M[2] + N[5]*M[3] + N[6]*M[4]

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/



https://www.nvidia.com/en-us/training/teaching-kits/

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Parallel Computation Patterns

Stencill SCtra \ f

Boundary condition

- calculation of output elements near the boundaries N[O] ~N[1] ~N[2] ~N[3] N[4] N[5] NI[6]
(beginning and end) of the array need to deal with N | 1 2 3 4 5 6 7 0
“‘ghost” elements * * * * *

« different policies (0, replicates of boundary M[O] M[1] M[2] M3] MI[4]

values, etc.) M| 3 4 5 4 3

Tmp | 12 | 20 | 30 28 0

— > _J
—~—
P 57 | 76 | 98 | 90

P[O] P[1] P[2] P[3] P[4 P[5] P[6]

P[5] = N[3]*M[O] + N[4]*M[1] + N[5]*M[2] + N[6]*M[3] + 0*M[4]
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- calculation of output elements near the boundaries N[O] ~N[1] ~N[2] ~N[3] N[4] N[5] NI[6]
(beginning and end) of the array need to deal with N | 1 2 3 4 5 6 7 0 0
“‘ghost” elements * * * * *

« different policies (0, replicates of boundary M[0] MI[1] M[2] M[3] MI[4]
values, etc.) M 3|4 | 5 4 | 3
Tmp 15 | 24 | 35 0 0
— > _/
—~—
P 57 | 76 | 98 | 90 | 74

P[O] P[1] P[2] P[3] P[4 P[5] P[6]

P[3] = N[4]*M[O] + N[5]*M[1] + N[6]*M[2] + 0*M[3] + 0*M[4]
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Boundary condition __global__ (
 calculation of output elements near , , T ,
the boundaries (beginning and end) of ’ )
the array need to deal with “ghost” _ _
elements 1 blockIdx. X blockDim. x threadIdx.x;
 different policies (0, replicates of Pvalue :
boundary values, etc.) N_start_point i — (Mask _Width/2);

( j | Mask_Width; j++) {
(N_start_point + j N_start_point + j < Width)
{
Pvalue N[N_start_point + j] M[j];
r
s

P[i] Pvalue;
}
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2D Convolution

321

N M tmp
1(2]|3|14|5(|6]|7 112|132 |1 1141985
213(4(5|6]|7]|38 2134|312 419 116(15| 12
314((5|6|7]|8|0°9 * 314(5|4]3 = 9116|1251 24| 21
4 (516|785 ]|6 213143 ]2 81151 25|21|16
516((7|8|5|6|7 112|132 |1 5112121|116( 5
617891012

718901213
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2D Convolution — boundaries with ghost cells

179

321

N M tmp
O:0:0:01:0 112]13]2(1 1({4]19(|8]|5
0112 |3|4|5|6]|7 2 (34132 419116|15|12
0{2((3|4|5|6]|7]|38 * 3(4]|15|4]3 = 9116|2524 21
0{3(4|5(6]|7|8]9 2 (3|14(3]2 8115|2521 16
0{4(|(5]|6|7|8|5]|6 112]13]2(1 5112|2116 5

5/6|7|8|5|6]|7

6(7|8[9]|0|1]2

7181910123 Ghost cells (apron cells, halo cells)
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_global__
( L ’ ’ ’ ’ ) {
Col blockIdx.x blockDim. x threadIdx.x;
Row = blockIdx.y blockDim.y + threadIdx.y; Col
(Col < w Row < h) {
pixVal ; N M
N_start_col = Col - (maskwidth ); 112134567 11213|2]1
N_start_row = Row — (maskwidth/”); Row >l13lalslel7]s >13lals]>
( i . § < maskwidth: ++j) { ) (34567809 * 3|14|5|4]3
( k ; k < maskWidth; k) { alslel718!l5!6 >13lals3]|2
curRow = N_start_row i
curCol N_start_col K; S|6|7[8]5]6]7 11271321
(curRow curRow < h curCol curCol < w) A 617|8[9]0]1]2
, pixVal in[curRow * w + curColl] mask[j*maskWidth+k]; 718l9lol1]l2]3
¥
}
out[Row * w + Coll] ( ) (pixVval);
¥
}
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_global__
( 4 ’ ’ 4 ’ ){
Col blockIdx.x blockDim. x threadIdx.x;
Row = blockIdx.y blockDim.y + threadIdx.y; IV_ﬁtart col
(Col < w Row < h) {
pixval = 0; N_start_row M
N_start_col = Col — (maskwidth/”); E::::::i> 1123|4567 112(13]2]1
N_start_row = Row — (maskwidth/”); >l13lalslel7]s >13lals]>
( j c maskwidth: i) { 314([5|6]|7]|8|0°9 * 314|5(4]3
( k ; k < maskwWidth; k) { alslel718!l5!6 >13lals3]|2
curRow = N_start_row i
curCol N_start_col K; S|6|7[8]5]6]7 11271321
(curRow curRow < h curCol curCol < w) A 617|8[9]0]1]2
pixVal in[curRow * w + curColl] mask[j*maskWidth+k]; 718l9lol1]l2]3
}
¥
}
out[Row * w + Coll] ( ) (pixVval);
¥
}
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_global__
( ’ ’ ’ 4 ’ ){
Col blockIdx.x blockDim. x threadIdx.x;
Row = blockIdx.y + blockDim.y + threadIdx.y; N_start_col N_start_col + maskWidth
(Col < w Row < h) {
pixval = 0; N_start_row M
N_start_col = Col — (maskwidth/2); mmmmm) |12 (3|4|5(6]|7 1(2)13]2|1
N_start_row = Row — (maskwidth/”); >l3lalslel71s >3 lal3|l2
(nt 3 D - el ) 4 N_startrow| |3 |4 |5|6|7|8|9]| * [3|4]|5]|4]|3
( k ; k < maskWidth; k) { + 2lslel7]slsle >3 lal3|l2
. maskWidth
curRow = N_start_row i
curCol = N_start_col K; 516 (718|567 112(3]12]1
(curRow curRow < h curCol curCol =< w) { 67|89 |10|1]|2
pixVal in[curRow * w + curCol] * mask[j*maskWidth+k]; 21lslolol1l2]l3
}
¥
}
out[Row * w + Col] ( ) (pixVal);
}
}
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Using constant memory and caching for Mask
« mask is used by all threads but not modified in the convolution kernel
« all threads in a warp access the same locations at each point in time

« CUDA devices provide constant memory whose contents are aggressively cached
» cached values are broadcast to all threads in a warp Mask
« effectively magnifies memory bandwidth without consuming shared memory

112321
« useofconst _ restrict_ _ qualifiers for the mask parameter informs the 2131al3]2
compiler that it is eligible for constant caching, for example: T ’mE
213143 ]|2
__global  void convolution 2D kernel ( 112(3]2]1
float *P,
float *N,

int height, int width,
const float _ restrict _ *M) More info: https://developer.nvidia.com/blog/cuda-pro-tip-optimize-pointer-aliasing/

{ ...}
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Tiling Opportunity Convolution

« calculation of adjacent output elements involve shared N[Ol N[1] N2 N3] N[4]  NI5]  NI6]

input elements 1 2|3 |4 5|6 | 7 =»P0
* e.g., N[2] is used in calculation of P[0], P[1], P[2]. P[3
and P[5] assuming a 1D convolution Mask_ Width of 1 2 3 4 5 6 7 |=— P[1]
width 5
« we can load all the input elements required by all threads 112 | 3| 4 | 5 | 6 | 7 |=——pP2]
in a block into the shared memory to reduce global
memory accesses 1 2 3 4 5 6 7 | P[3]

1 1 2 3 | 4| 5 | 6 | 7 |=—pP[4]

1 2 3 4 5 6 ] |we—p P[5]

1 1 2 1 3| 4|5 | 6 | 7 |=—pP6]
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Tile considerations
M Mask_Width / 2 (integer arithmetics)
1 2 3 2 1 1 2 3 2 1

Input tile size = T + Mask_Width -1

N 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20

P 72 1 81 90 | 99 | 108 | 117|126 | 135

Output tile size - T

Assume that we want to have each block to calculate T output elements
« T+ Mask_Width -1 input elements are needed to calculate T output elements

T+ Mask_ Width -1 is usually not a multiple of T, except for small T values

« T is usually significantly larger than Mask_Width

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/



https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns

Stencill

SCtrain

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Output tile definition

Tile 0

Tile 1

Tile 3 Tile N

81

90

99

108

117

126

135

» each thread block calculates one output tile
« each output tile width is T
 Tis 4 in this example

Output tile size - T
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Input Tile in Shared Memory
M Mask_Width / 2 (integer arithmetics)
1 2 3 2 1 1 2 3 2 1

Input tile size = T + Mask_Width -1

N 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20

P 72 1 81 90 | 99 | 108 | 117|126 | 135

Output tile size - T

r===-r=—=--= =TT ===l

Tile in a shared memory: Ns 718 9 |10 |11 |12 | 13 |14 | 15 | 16 | 17 ' 18

* each input tile has all values needed to calculate the corresponding output tile.

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/



https://www.nvidia.com/en-us/training/teaching-kits/

Parallel Computation Patterns S C > | SUPERCOMPUTING
. ra ‘ n KNOWLEDGE
Stencil t PARTNERSHIP
Design 1: The size of each thread block matches Design 2: The size of each thread block matches the
the size of an output tile size of an input tile
« All threads participate in calculating output elements « Some threads will not participate in calculating output elements
* blockDim.x would be 8 in our example * blockDim.x would be 12 in our example
« Some threads need to load more than one input * Each thread loads one input element into the shared memory

element into the shared memory
Input tile size = T + Mask_Width -1

N 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20

P 72 1 81 90 | 99 | 108 | 117|126 | 135

Output tile size - T

Tile in a shared memory: Ns 7 8 9 |10 |11 |12 | 13 | 14 | 15 | 16 | 17 ' 18

« each input tile has all values needed to calculate the corresponding output tile.
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Design 1: The size of each thread block matches Design 2: The size of each thread block matches the
the size of an output tile size of an input tile
« All threads participate in calculating output elements » Some threads will not participate in calculating output elements
* blockDim.x would be 8 in our example * blockDim.x would be 12 in our example
« Some threads need to load more than one input » Each thread loads one input element into the shared memory

element into the shared memory
Input tile size = T + Mask_Width -1

N 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20

P 72 1 81 90 | 99 | 108 | 117|126 | 135

Output tile size - T

Tile in a shared memory: Ns 7 8 9 |10 |11 |12 | 13 | 14 | 15 | 16 | 17 ' 18

« each input tile has all values needed to calculate the corresponding output tile.
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Thread to Input and Output Data Mapping

N 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20

P 72 1 81 90 | 99 | 108 | 117|126 | 135

Output tile size -T=0_TILE_WIDTH

Thread 0 reads this Thread 0 writes this

For each thread:

* index_i=index_o - n, 1 2 3 2 1
 where:
* nis Mask_ Width/2 n = Mask_Width / 2

* nis 2in this example
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Thread to Input and Output Data Mapping

N 0 1 2 3 4 5 A
t

index_i(t0)

Shared memory: Ns

Sl
i{—\n
© [ 00
—t
<t
—t
—t
—t
<t
—
—t
- i

10 (11 | 12 | 13 | 14 | 15 | 16 | 17 ' 18 !

output = ©0.07;
((index_1i == 0) && (index_i < Width)) {
« all threads participate in Ns[tx] = N[index_i];
loading input tiles I3
{
Ns[tx] = 0.07;
¥
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Thread to Input and Output Data Mapping

N 0 1 2 3 4 5/1
index_i(t0) t

Shared memory: Ns
index_o(t0) tO_I
P It 72 | 81 | 90 | 99 | 108 117|126 135

21
%1—-w
O €= 0
—
—
—H
—
=
—
—
ot

index_o = blockIdx.x * O_TILE_WIDTH + threadIdx.x;
index_1i = index_o - Mask_Width/2;
(threadIdx.x < O_TILE WIDTH){

« some threads do not output = 0.07;
participate in calculating (3 = 2; 3 < Mask_Width; j++) {
output output += M[j] * Ns[j+threadIdx.x];
I3
P[index_o] = output;
I3
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Setting Block Size Kernel code (partial)
iﬁéex_o blockIdx. X O TILE_WIDTH
(O_TILE_WIDTH threadIdx.x;
(Mask_Width-1)) index_i = index_o — n - Mask_Width/2;
dim3 ( 1, 1); ((index_i ) (index_i < Width)) {
Ns [tx] N[index_il;
dim3 ((Width-1)/0_TILE_WIDTH+1, 1, 1) +
{
Ns [tx] .0f;
¥

(threadIdx.x O TILE_WIDTH)A{
output 0T,
(3 . Mask_Width; j++) {
output M[j] * Ns[j+threadIdx.x];
¥

P[index_o] output;

Foaas
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The Efficiency of Tiling
 Significant reduction of Global Memory bandwidth

1D Convolution 2D Convolution
* The reduction ratio — how many times tiling * The reduction ratio is:
reduces accesses to Global Memory « O _TILE WIDTH?2 * MASK_WIDTH?/
« MASK WIDTH * (O_TILE_WIDTH+MASK_WIDTH-1)?
(O_TILE_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)
O_TILE WIDTH |16 |32 |64 | 128|256 O_TILE_WIDTH E-IMEEEI
MASK WIDTH=5 4.0 44 47 49 409 MASK WIDTH =5 11.1 19.7 221
MASK WIDTH=9 6.0 7.2 80 85 87 MASK _WIDTH =9 20.3 36 51.8 64

Tile size has significant effect on of the memory bandwidth reduction ratio.

This often argues for larger shared memory size.
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Parallel Reduction
« acommonly used strategy for processing large input data sets
» there is no required order of processing elements in a data set (associative and commutative)

Approach
partition the data set into smaller chunks
* have each thread to process a chunk
» use a reduction tree to summarize the results from each chunk into the final answer
« we will focus on the reduction tree step for now

Reduction also enables other techniques
* reduction is also needed to clean up after some commonly used parallelizing transformations
« Example: privatization
* multiple threads write into an output location
» replicate the output location so that each thread has a private output location (privatization)
» use a reduction tree to combine the values of private locations into the original output location
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Parallel Reduction
« summarize a set of input values into one value using a
“reduction operation”
* Max, Min, Sum, Product, ...
» can be used used with a user defined reduction operation
function if the operation:
* s associative and commutative
* has a well-defined identity value (e.g., O for sum)

max maXx
An Efficient Sequential Reduction O(N)
 initialize the result as an identity value for the reduction 7 6
operation
« Smallest possible value for max reduction
» Largest possible value for min reduction max
« 0 for sum reduction
» 1 for product reduction 7
 iterate through the input and perform the reduction operation
between the result value and the current input value
* N reduction operations performed for N input values
» each input value is only visited once — an O(N) algorithm

A parallel reduction tree algorithm performs N-1
operations in log(N) steps
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Parallel Reduction
« summarize a set of input values into one value using a
“reduction operation”
* Max, Min, Sum, Product, ...
» can be used used with a user defined reduction operation
function if the operation:
* s associative and commutative
* has a well-defined identity value (e.g., O for sum)

max maXx
An Efficient Sequential Reduction O(N)
 initialize the result as an identity value for the reduction 7 6
operation
« Smallest possible value for max reduction
» Largest possible value for min reduction max
« 0 for sum reduction
» 1 for product reduction 7
 iterate through the input and perform the reduction operation
between the result value and the current input value
* N reduction operations performed for N input values
» each input value is only visited once — an O(N) algorithm

A parallel reduction tree algorithm performs N-1
operations in log(N) steps
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Parallel Sum Reduction on GPU Data 1 vi 0 4 6 3

Parallel implementation

» each thread adds two values in each step

* recursively halve # of threads Step 1
« takes log(n) steps for n elements, requires n/2 threads

7

V

Assume an in-place reduction using shared memory

» the original vector is in device global memory

» the shared memory is used to hold a partial sum vector

 initially, the partial sum vector is simply the original
vector

* each step brings the partial sum vector closer to the sum

» the final sum will be in element 0 of the partial sum
vector S

» reduces global memory traffic due to reading and writing
partial sum values 25

» thread block size limits n to be less than or equal to |

2,048 Thread 0 Thread 1 Thread 2 Thread 3

Step 2

tep 3
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A Simple Thread Block Design Data
» each thread block takes 2*BlockDim.x input elements
* each thread loads 2 elements into shared memory
__shared__ float partialSum[”*BLOCK_SIZE];

sum

Step 1
threadIdx.Xx;

*blockIdx.xxblockDim. x;

unsigned int t
unsigned int start

7

V

partialSum[t]
partialSum[blockDim+t]

input[start + tI;
input[start +
blockDim. x+t]; Step 2

|
|
|
I
// The reduction step :
for (unsigned int stride = 1;
stride <= blockDim.Xx;
stride *= )

{ Step 3
__syncthreads();
if (t % stride == 0) 25

partialSum[’*t]+= partialSum[’*t+stride]; |

y ——— ——— _—— ———

Thread O Thread 1 Thread 2 Thread 3

__syncthreads() is needed to ensure that all elements of each
step of partial sums have been generated before the next step
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Global Picture Data

« at the end of the kernel, Thread 0 in each block
writes the sum of the thread block in partialSum][0]
into a vector indexed by the blockldx.x Step 1

7

V

» there can be a large number of such sums if the
original vector is very large

« the host code may iterate and launch another kernel Step 2

 if there are only a small number of sums, the host
can simply transfer the data back and add them

I |

| | |

together I : I

Step 3 I | :

 alternatively, Thread 0 of each block could use 75 : I :

atomic operations to accumulate into a global sum I : :
variable. - - - -
Thread 0 Thread 1 Thread 2 Thread 3
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Nalve Thread to Data Mapping Data
each thread is responsible for an even-index location of the
partial sum vector (location of responsibility)
« after each step, half of the threads are no longer needed
» one of the inputs is always from the location of responsibility Step 1
* in each step, one of the inputs comes from an increasing
distance away

Control Divergence of Naive Kernel

 in each iteration, two control flow paths will be sequentially  Step 2
traversed for each warp

» threads that perform addition and threads that do not

» threads that do not perform addition still consume execution
resources

« half or fewer of threads will be executing after the first step Step 3

« all odd-index threads are disabled after first step

» after the 5th step, entire warps in each block will fail the if 25
test, poor resource utilization but no divergence

« this can go on for a while, up to 6 more steps (stride = 32,
64, 128, 256, 512, 1024), where each active warp only has Thread 0
one productive thread until all warps in a block retire

Thread 1 Thread 2 Thread 3
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Better Thread to Data Mapping
* in some algorithms, one can shift the index usage to
improve the divergence behavior
« Commutative and associative operators
« always compact the partial sums into the front
locations in the partialSum[ ] array
» keep the active threads consecutive

for (unsigned int stride = blockDim.Xx;
stride > 0;
stride /= 2)
{
__syncthreads();
if (t < stride)
partialSum[t] += partialSum[t+stridel];

¥

Data

Step 1

Step 2

Step 3

25

Thread Thread Thread Thread
0 1 2 3
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A Quick Analysis for a 1024 thread block

* no divergence in the first 5 steps

» the final 5 steps will still have divergence

1024, 512, 256, 128, 64, 32 consecutive threads

are active in each step

All threads in each warp either all active or all

inactive

{

__syncthreads();
if (t < stride)

¥

partialSum[t] += partialSum[t+stridel];

for (unsigned int stride =

stride =
stride /=

blockDim. x;

)

Data

Step 1

Step 2

Step 3

25
|

Thread
0

Thread
1

Thread
3
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Histogram

« A method for extracting notable features and patterns from
large data sets

« Basic histograms - for each element in the data set, use the .

value to identify a “bin counter” to increment 10
A Text Histogram Example
» define the bins as four-letter sections of the alphabet: a-d, e-
h, i-l, n-p, ...
» for each character in an input string, increment the = =
a-d e-h i-l m-p g-t u-x

y-Z

[o0]

(o)}

N

N

o

appropriate bin counter.

* in the phrase “Programming Massively Parallel Processors”
the output histogram is shown below:
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A simple parallel histogram algorithm

» partition the input into sections

* have each thread to take a section of the input

* each thread iterates through its section.

« for each letter, increment the appropriate bin counter

Input Partitioning Affects Memory Access Efficiency

Sectioned partitioning 111111111 313(3(3/3/414!4|4 |4
* results in poor memory access efficiency

« adjacent threads do not access adjacent memory locations

* accesses are not coalesced

Thread id

Interleaved partitioning

» all threads process a contiguous section of elements
» they all move to the next section and repeat

« the memory accesses are coalesced

« DRAM bandwidth is poorly utilized
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Interleaved partitioning of input

Iteration 1 Iteration 2

Thread 2 Thread 0 Thread 1

Thread 2

Thread 3
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Interleaved partitioning of input
» for every input element thread increments selected bin
* bin incrementation results in

 Read-modify-write operation

« can result in Data Race Thread 0 Thread 1 Thread 2 Thread 3

Data Race in Parallel Thread Execution

thread1: Old < Mem|[x] thread2: Old < Mem(x]
New < Old + 1 New < OIld + 1 0 1 0 2 1 0 0
Mem[x] € New Mem[x] € New ad eh il mp gt ux yz

« Old and New are per-thread register variables.
Question 1: If Mem[x] was initially 0, what would the value of Mem[x] be after threads 1 and 2 have completed?
Question 2: What does each thread get in their Old variable?

Unfortunately, the answers may vary according to the relative execution timing between the two threads, which is referred to as a
data race.
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Data race examples

Timing Scenario #1

1

2
3
4
5
6

(0) Old € Mem|x]
(1) New € Old + 1
(1) Mem[x] € New

(1) Old € Mem(x]
(2) New € Old +1
(2) Mem[x] € New

Thread 1 Old =0
Thread 2 Old = 1
Mem[x] = 2 after the
sequence

Timing Scenario #2

o U1 A W N

(1) Old € Mem|Xx]
(2) New € Old +1
(2) Mem[x] € New

(0) Old € Mem(x]
(1) New € Old +1
(1) Mem[x] € New

Thread 1 Old = 1
Thread 2 Old =0
Mem[x] = 2 after the
sequence

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/



https://www.nvidia.com/en-us/training/teaching-kits/

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Parallel Computation Patterns :
Histogram S Ctra 18

Data race examples

Timing Scenario #3

« Thread 10ld=0 (0) Old € Mem(x]
e Thread20OIld=0 (1) New € Old +1

« Mem[x] = 1 after the

sequence (0) Old € Mem(x]

(1) New € Old + 1

1
2
3
4 (1) Mem[x] € New
5
6 (1) Mem[x] € New

Timing Scenario #4

« Thread10Ild =0 (0) Old € Mem|x]
« Thread20OIld=0 (1) New € Old + 1

« Mem[x] = 1 after the

sequence (0) Old € Mem[x]

1

2

3

4 (1) Mem[x] € New
5 (1) New € Old + 1

6 (1) Mem[x] € New
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Atomic Operations Ensure Good Outcomes
threadl: Old € Mem]x]
New € Old +1
Mem[x] € New
thread2: Old € Mem|x]
New €< Old +1
Mem[x] € New
Or
thread2: Old € Mem|x]
New € Old +1
Mem[x] € New
threadl: Old € Mem|x]
New €< Old + 1

Mem[x] € New

Timing Scenario #3

« Thread 1 OIld =0

« Thread 20Ild =0

« Mem[x] = 1 after the
sequence

Timing Scenario #4

« Thread 10OIld =0

« Thread 2 0Ild =0

« Mem[x] = 1 after the
sequence

(0) Old € Mem|[Xx]
(1) New € Old +1

1
2
3
4 (1) Mem[x] € New
5
6

(0) Old € Mem|x]

(1) New € Old + 1
(1) Mem[x] € New

(0) Old € Mem|Xx]

(1) New € Old +1
(1) Mem[x] € New

(0) Old € Mem|x]
(1) New € Old +1

(1) Mem[x] € New
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Atomic Operations
threadl: Old € Mem]x]
New € Old +1
Mem[x] € New
thread2: Old € Mem|x]
New €< Old +1
Mem[x] € New
Or
thread2: Old € Mem|x]
New € Old +1
Mem[x] € New
threadl: Old € Mem|x]
New €< Old + 1

Mem[x] € New

Key Concepts of Atomic Operations

» aread-modify-write operation performed by a single hardware instruction
on a memory location address
» read the old value, calculate a new value, and write the new value to
the location

» the hardware ensures that no other threads can perform another read-
modify-write operation on the same location until the current atomic
operation is complete

» any other threads that attempt to perform an atomic operation on the
same location will typically be held in a queue

 all threads perform their atomic operations serially on the same
location
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Atomic Operations
threadl: Old € Mem]x]
New € Old +1
Mem[x] € New
thread2: Old € Mem|x]
New €< Old +1
Mem[x] € New
Or
thread2: Old € Mem|x]
New € Old +1
Mem[x] € New
threadl: Old € Mem|x]
New €< Old + 1

Mem[x] € New

Atomic Arithmetic Operations in CUDA
« performed by calling functions that are translated into single instructions
(a.k.a. intrinsic functions or intrinsics)
« Atomic add, sub, inc, dec, min, max, exch (exchange), CAS (compare
and swap)
 Read CUDA C programming Guide for details

Example: Atomic Add

int atomicAdd (int* address, int wval);,

» reads the 32-bit word old from the location pointed to by address in global or
shared memory, computes (old + val), and stores the result back to memory
at the same address.

» these three operations are performed in one atomic transaction. The
function returns old.

More Atomic Adds in CUDA
* unsigned 32-bit integer atomic add - unsigned int atomicAdd
» unsigned 64-bit integer atomic add, single-precision floating-point atomic

add, double-precision floating-point atomic add, 16-bit floating-point atomic
add, ...
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A Basic Text Histogram Kernel

» The kernel receives a pointer to the input buffer of byte
values __global__ (

» Each thread process the input in a strided pattern !
1 threadIdx. x blockIdx. x blockDim. x;

stride blockDim. x gridDim. x;

(i < size) {
alphabet_position = buffer[i] — “a”;

(alphabet_position alpha_position )
atomicAdd(&(histo[alphabet_position/41), 1);
i stride;

¥
¥
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A Basic Text Histogram Kernel
__global__ histo_kernel(
* ’
’ . )
Heavy contention and serialization {
‘ i = threadIdx.x + blockIdx.x * blockDim.Xx;

Block 0 Block 1 Block N // stride is total number of threads

stride = blockDim.x * gridDim.Xx;

SN

// All threads handle blockDim.x * gridDim.x

// consecutive elements
(i < size) {
alphabet_position = buffer[i] — “a”;
(alphabet_position == 0 && alpha_position < 26)

atomicAdd(&(histolalphabet_position/41), 1);
1 += stride;
Iy
I3

=

Atomic Updates
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Privatization

» Privatization is a technique for reducing
latency, increasing throughput, and
reducing serialization

Heavy contention and serialization

4

Block 0 Block 1 Block N
- a

=

Atomic Updates

>

Much less contention and serialization

Block 0 Block 1 ‘ Block N

ﬂ‘l"l'ﬂ g‘l"l'g ﬂ‘l"l'g

= ,

Much less contention
h and serialization
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Privatization
« privatization is a technique for reducing latency, increasing
throughput, and reducing serialization

Much less contention and serialization

Block 0 Block 1 ‘ Block N

ol R i = =

2 ,

Much less contention
- and serialization

Cost and Benefit of Privatization

Cost

» overhead for creating and initializing private copies

« overhead for accumulating the contents of private copies into the
final copy

Benefit

* much less contention and serialization in accessing both the
private copies and the final copy

» the overall performance can often be improved more than 10x

Shared Memory Atomics for Histogram

» each subset of threads are in the same block

« much higher throughput than DRAM (100x) or L2 (10x) atomics

* less contention — only threads in the same block can access a
shared memory variable

 this is a very important use case for shared memory!
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__global__

’

Privatized Histogram kernel )

Create private copies of the {
histo[] array for each thread block » __shared__ histo_privatel[/];
Initialize the bin counters in the > (threadIdx.x ) histo_private[threadidx.x] ;

private copies of histo[] syncthreads();

f’ 1 threadIdx. x blockIdx.x blockDim. x;
stride blockDim. x gridDim. x;
(i < size) {
Build Private Histogram > < alphabet_position = buffer[i] — “a”;
(alphabet_position alpha_position )
atomicAdd(&(private_histo[alphabet_position/41), 1);
i stride;
.}
__syncthreads();
Build Final Histogram > (threadIdx.x ) {
atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x] );
}

¥
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More on Privatization

» privatization is a powerful and frequently used technique for parallelizing applications

» the operation needs to be associative and commutative
* histogram add operation is associative and commutative
* no privatization if the operation does not fit the requirement

» the private histogram size needs to be small
 fits into shared memory

« What if the histogram is too large to privatize?
« sometimes one can partially privatize an output histogram and use range testing to go to either global memory or shared

memory
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CPU-GPU Data Transfer using DMA
« DMA (Direct Memory Access) hardware is used by cudaMemcpy() for better efficiency CPU Main Memory (DRAM)
« CPU is not used and perform useful calculations

 DMA is hardware unit used to transfer given number of bytes

» between physical memory address space regions PCle
» uses system interconnect: in current systems PCI-Express
Virtual Memory Management Global <:>m
* Problem for DMA: not all variables and data structures are always located in the Memory
physical memory GPU card
Data Transfer and Virtual Memory (or other 1/O cards)

« DMA uses ONLY physical addresses
« when cudaMemcpy() copies an array, it is implemented as one or more DMA transfers

Solution: Pinned Memory

« pinned memory are virtual memory pages that are specially selected, and they cannot
be paged out (removed from physical memory)

« pinned memory is allocated with a special system API function call

CPU memory that serve as the source or destination of a DMA transfer must be
allocated as pinned memory
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CUDA data transfer uses pinned memory.
» the DMA used by cudaMemcpy() requires that any source or destination CPU Main Memory (DRAM)
in the host memory is allocated as pinned memory

« if a source or destination of a cudaMemcpy() in the host memory is not

allocated in pinned memory, it needs to be first copied to a pinned PCle
memory — extra overhead
» cudaMemcpy() is faster if the host memory source or destination is
allocated in pinned memory since no extra copy is needed Global <:>m
Memory
GPU card
Usmg Pinned Memory in CUDA (or other I/O cards)
use the allocated pinned memory and its pointer the same way as those
returned by malloc(); Allocate/Free Pinned Memory
. ’gg only difference is that the allocated memory cannot be paged by the cudaHostAlloc(), three parameters
» the cudaMemcpy() function should be about 2X faster with pinned ) égldress of pointer to the aIIocgted memory
« Size of the allocated memory in bytes
memory : . * Option — use cudaHostAllocDefault for now
« pinned memory is a limited resource
« over-subscription can have serious consequences cudaFreeHost(), one parameter

* Pointer to the memory to be freed
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Example: Vector Addition Host Code

()

{
h_A, *h_B, *h _C;
cudaHostAlloc(( ) &h_A, N
cudaHostAlloc(( ) &h_B, N (
cudaHostAlloc( ( ) &_C, N
}

—

), cudaHostAllocDefault);
), cudaHostAllocDefault);
), cudaHostAllocDefault);

CPU Main Memory (DRAM)

PCle

Global <:>m

Memory

GPU card
(or other I/O cards)
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System can perform multiple CUDA operations Sequential execution
simultaneously: Transfer
multiple CUDA kernels on GPU CPU > GPU Kernel

CUDA Stream

Stream Semantics

one cudaMemcpyAsync from Host to Device
one cudaMemcpyAsync from Device to Host fime o
computation on the CPU

Transfer Transfer
CPU »> GPU CPU »> GPU

a sequence of operations that execute in issue-order on the GPU e AL G

Kernel Kernel Kernel

Two operations issued into the same stream will execute in
issue-order. Operation B issued after Operation A will not begin
to execute until Operation A has completed.

Two operations issued into separate streams have no ordering
prescribped by CUDA. Operation A issued into stream 1 may
execute before, during, or after Operation B issued into stream 2.
Operation: Usually, cudaMemcpyAsync or a kernel call. More

CPU execution — multi-threaded
generally, most CUDA API calls that take a stream parameter, as

well as stream callbacks. Concurrent execution

Kernel Kernel
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Default Stream (aka Stream '0’) Sequential execution
« Stream used when no stream is specified Transfer
« Completely synchronous w.r.t. host and device CPU > GPU Kernel

As if cudaDeviceSynchronize() inserted before and after every

CUDA operation —
» Exceptions — asynchronous w.r.t. Transfer Transfer time

hostKernel launches in the default stream CPU S GPU CPU > GPU

cudaMemcpy*Async

cudaMemset*Async Kernel Kernel Kernel

cudaMemcpy within the same device

H2D cudaMemcpy of 64kB or less Kernel Kernel Kernel

Requirements for Concurrency

Kernel Kernel

CPU execution — multi-threaded

Concurrent execution
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CUDA Streams — How to use them?

* Create/Destroy
« cudaStream_t stream;
- cudaStreamCreate(&stream);
- cudaStreambDestroy(stream);

* Launch

« my_kernel<<<grid,block,0,stream>>>(...

« cudaMemcypAsync( .., stream );

* Synchronize
- cudaStreamSynchronize(stream);

Sequential execution

Transfer
CPU - GPU

Kernel

time

Transfer Transfer
CPU - GPU

CPU > GPU

Kernel Kernel Kernel

Kernel Kernel Kernel

Kernel Kernel

CPU execution — multi-threaded

Concurrent execution
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Basic Example 1: KERNEL CONCURRENCY
« assume foo only utilizes 50% of the GPU

e using user streams CPU .

cudaStream_t streaml, stream?2;

cudaStreamCreate(&streaml) ;

cudaStreamCreate(&stream?) ; Stream 2 m

foo<<<blocks, threads, ?,streaml=>>>();
foo<<<blocks, threads, ?,stream2=>>>();

cudaStreamDestroy(streaml);
cudaStreamDestroy(stream2);
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Basic Example 2: CONCURRENT MEMORY COPIES CPU I
* assume pinned memory

Synchronous Stream 1 Data Transfer m

cudaMemcpy(...);
cPU “

foo<<<...>>>();
Asynchronous Same Stream
cudaMemcpyAsync(...,streaml); Stream 1 Data Transfer Kernel

foo<<<...,streaml>>>();

Asynchronous Different Streams CPU II
cudaMemcpyAsync(...,streaml);

foo<<<...,stream2>>>(); Stream 1 Data Transfer
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Transfer Transfer

Serialized Data Transfer and Computation
» So far, the way we use cudaMemcpy serializes data

transfer and GPU computation for VecAddKernel() T T
A2 A3 A4 B1 B2

Ideal, Pipelined Timing | | . |
« Divide large vectors into segments

» Overlap transfer and compute of adjacent segments
Let CUDA devices overlap transfers and kernels .
execution Stream 3
Stream 4
Stream 1
D to H engine Sl PO T e v IV Stream 2
GPU processing / Stream 3
H to D engine Stream 4

vV vV v v

Slide is partially based on NVIDIA GPU Teaching Kit — Accelerated Computing: https://www.nvidia.com/en-us/training/teaching-kits/



https://www.nvidia.com/en-us/training/teaching-kits/

SUPERCOMPUTING

CPU-GPU Data Transfer using DMA SCtra | N [noweose

PARTNERSHIP

Serialized Data Transfer and Computation

//non-streamed version Transfer Transfer Kernel
cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice); A B C=A+B
cudaMemcpy(d_b, h_b, size, cudaMemcpyHostToDevice);

Kernel<<<b, t>>>(d_a, d_b, d_c, N);

cudaMemcpy(h_c, d_c, size, cudaMemcpyDeviceToHost);

//streamed version

// C — number of pipeline phases - SN OINT NN

// ns — total number of streams used DtoHengine IR IICN

// size — size of 1input arrays GPU processing K1 . N

cudaStream_t stream[ns]; -

for (int 1 = 0; i < ns; ++1) H to D engine
cudaStreamCreate(&stream[i]);

for (int 1 = 0, i<c; i++){
size_t off = (size/c)*i;
cudaMemcpyAsync(d_a+off, h_a+off, size/c, cudaMemcpyHostToDevice, stream[i%ns]);
cudaMemcpyAsync(d_b+off, h_b+off, size/c, cudaMemcpyHostToDevice, stream[i%ns]);
Kernel<<<b/c, t, ¢, stream[i%ns]>>>(d_a+off, d_b+off, d_c+off, N/c);
cudaMemcpyAsync(h_c+off, d_c+off, size/c, cudaMemcpyDeviceToHost, stream[i%ns]);

¥

Nvidia: https://www.olcf.ornl.gov/wp-content/uploads/2020/07/07 Concurrency.pdf
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HeatFlow:
GPU Accelerated Version

Univerza v Ljubljaini

| TECHNISCHE CINECA VSB TECHNICAL | IT4AINNOVATIONS
N UNIVERSITAT || || UNIVERSITY | NATIONAL SUPERCOMPUTING
- WIEN II" oF osTRAVA | CENTER
?n?err:u?iv%rrsifag'ig

R Co-funded by the This project has been funded with support from the European Commission.
S Erasmus+ Programme This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which
* 5k

of the European Union may be made of the information contained therein.



SUPERCOMPUTING

SCtrain i
PARTNERSHIP

Thank you for your attention!
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