
IntroducƟon to OpenMP
Fabio Pitari, Cineca

January/2022



IntroducƟon
OpenMP vs MPI
OpenMP execuƟon model
OpenMP programming model
OpenMP memory model

Worksharing constructs
Worksharing constructs rules
for/do loop
secƟons
single
workshare

How to avoid data races
CriƟcal construct

ReducƟon clause
Barrier construct
Atomic construct

SIMD
Basic concepts
AutovectorizaƟon
OpenMP simd direcƟve
VectorizaƟon of funcƟons

Tasks
Basic concepts
Data scopes and reducƟon
Tasks synchronizaƟon
Taskloops

Conclusions



IntroducƟon



Disadvantages of MPI
Fabio Pitari, Cineca

4

⇒ The data to be shared must be exchanged with explicit inter-process communicaƟons

! It is in charge to the programmer to design and implement the data exchange
between process (taking care of work balance)
You can not adopt a strategy of incremental parallelizaƟon
⇒ The communicaƟon structure of the enƟre program has to be implemented

It is difficult to maintain a single version of the code for the serial and MPI program
⇒ AddiƟonal variables are needed
⇒ Need to add a lot of boilerplate code



What is OpenMP?
Fabio Pitari, Cineca

5

De-facto standard ApplicaƟon Program Interface (API) to write shared memory
parallel applicaƟons in C, C++ and Fortran

Consists of compilers direcƟves, run-Ɵme rouƟnes and environment variables
"Open specificaƟons for MulƟ Processing" maintained by the OpenMP Architecture
Review Board (hƩp://www.openmp.org)

Founding concepts

The "workers" who do the work in parallel (thread) "cooperate" through shared memory

Memory accesses instead of explicit messages

"local" model parallelizaƟon of the serial code

It allows an incremental parallelizaƟon



History
Fabio Pitari, Cineca

6

Born to saƟsfy the need of unificaƟon of proprietary soluƟons
The past

October 1997 - Fortran version 1
October 1998 - C/C++ version 1
November 1999 - Fortran version 1.1 (interpretaƟons)
November 2000 - Fortran version 2
March 2002 - C/C++ version 2
May 2005 - combined C/C++ and Fortran version 2
May 2008 - version 3.0
July 2011 - version 3.1



History
Fabio Pitari, Cineca

7

The present
July 2013 - version 4.0
November 2015 - version 4.5
November 2018 - version 5.0
November 2020 - version 5.1
November 2021 - version 5.2



MPI ExecuƟon model
Fabio Pitari, Cineca

8

MPI model

Everything lies in a huge parallel region where the same code is executed by all the ranks

ComunicaƟon among ranks has to be explicitely built when needed



OpenMP ExecuƟon model
Fabio Pitari, Cineca

9

Fork-Join model

Fork At the beginning of a parallel region the master thread creates a team of threads composed
by itself and by a set of other threads

Join At the end of the parallel region the thread team ends the execuƟon and only the master
thread conƟnues the execuƟon of the (serial) program



OpenMP: Hello world
Fabio Pitari, Cineca

10

A set of instrucƟons can be executed on the whole set of threads using the parallel
direcƟve

C/C++

#include <stdio.h>
int main () {

/* Serial part */
{

printf("Hello world\n");
}
/* Serial part */
return 0;

}



OpenMP: Hello world
Fabio Pitari, Cineca

11

A set of instrucƟons can be executed on the whole set of threads using the parallel
direcƟve

C/C++

#include <stdio.h>
int main () {

/* Serial part */
#pragma omp parallel

{
printf("Hello world\n");

}
/* Serial part */
return 0;

}



OpenMP: Hello world
Fabio Pitari, Cineca

12

A set of instrucƟons can be executed on the whole set of threads using the parallel
direcƟve

Fortran

PROGRAM HELLO
! Serial code

Print *, "Hello World!!!"
! Serial code
END PROGRAM HELLO



OpenMP: Hello world
Fabio Pitari, Cineca

13

A set of instrucƟons can be executed on the whole set of threads using the parallel
direcƟve

Fortran

PROGRAM HELLO
! Serial code
!$OMP PARALLEL

Print *, "Hello World!!!"
!$OMP END PARALLEL
! Serial code
END PROGRAM HELLO



Programming model
Fabio Pitari, Cineca

14

Compiler direcƟves

C/C++

#pragma omp <directive > [clause [clause] ...]

Fortran

!$omp <directive > [clause [clause]...]

directive mark the block of code that should be made parallel
clause add informaƟon to the direcƟves

⇒ Variables handling and scoping (shared, private, default)
⇒ ExecuƟon control (how many threads, work distribuƟon...)



Programming model
Fabio Pitari, Cineca

15

Note

GNU (gcc, g++, gfortran) -fopenmp
Intel (icc, icpc, ifort) -qopenmp



Programming model
Fabio Pitari, Cineca

16

Compiler direcƟves
Environment variables

OMP_NUM_THREADS size set the number of threads
OMP_DYNAMIC true|false set the number of threads automaƟcally
OMP_PLACES cores|threads|sockets set the place where to allocate threads

OMP_PROC_BIND true|false|close|spread bound threads to such place
OMP_NESTED true|false allows nested parallelism

Other commonly used variables will be clearer later (listed here for reference):

OMP_STACKSIZE size [B|K|M|G] size of the stack for threads
OMP_SCHEDULE schedule[,chunk] iteraƟon scheduling scheme

Note
$ export VARIABLE_NAME=value



Programming model
Fabio Pitari, Cineca

17

Note
Intel compilers add some addiƟonal variables, which takes precedence over the OpenMP standard variables if
set both. They enable specific run-Ɵme libraries included in the Intel compilers. For instance:

KMP_DYNAMIC load_balance|thread_limit replace OMP_DYNAMIC

KMP_AFFINITY compact|scatter|balanced|verbose replace OMP_PROC_BIND

KMP_STACKSIZE size [B|K|M|G] replace OMP_STACKSIZE

and many others you can find in the Intel documentaƟon. In parƟcular you might want to refine affinity
starƟng from KMP_AFFINITY variable (see this link).

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compilation/supported-environment-variables.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support/thread-affinity-interface-linux-and-windows.html


Affinity is relevant
Fabio Pitari, Cineca

18

The way in which cores are mapped by threads can be relevant with respect to performances

Switching different values of the variables allows to easily test different bindings
Note
Affinity might be relevant also for iniƟalizaƟons (first touch issue)

Memory addresses refers to the whole physical memory,
disregarding the socket on which the corresponding physical
memory is aƩached

⇒ This means that a serial iniƟalizaƟon tries to allocate everything on
the physical memory of the socket of the master thread

Mapping is effecƟvely executed when data are wriƩen to such
addresses

⇒ This means that in a following parallel region the threads on the
other socket will need to access to a memory not aƩached to that
socket (boƩleneck)

// serial initialization
for (i=0; i<N; i++)

x[i] = 0;

// parallel access
#pragma omp parallel
for (i=0; i<N; i++)

// something with x[i]



Programming model
Fabio Pitari, Cineca

19

Compiler direcƟves
Environment variables
Run-Ɵme library
omp_get_thread_num() get thread ID
omp_get_num_threads() get number of threads in the team for threads
omp_set_num_threads(int n) set the number of threads
omp_get_wtime() returns elapsed wallclock Ɵme



Programming model
Fabio Pitari, Cineca

20

Note

#include <omp.h> // C++

USE omp_lib ! Fortran



CondiƟonal compilaƟon
Fabio Pitari, Cineca

21

C/C++

# i f d e f _OPENMP
p r i n t f ( "OpenMP suppor t :%d" ,_OPENMP ) ;

# e l s e
p r i n t f ( " S e r i a l e x e cu t i on . " ) ;

# e n d i f

Fortran
# i f d e f _OPENMP

p r i n t * , "OpenMP suppor t : " , _OPENMP
#e l s e

p r i n t * , " S e r i a l e x e cu t i on . "
# end i f

Note The macro _OPENMP has the value yyyymm, which contains the release date of the OpenMP
version currently being used



Process and thread
Fabio Pitari, Cineca

22

A process is an instance of a computer
program
Some informaƟon included in a process
are:

Text
⇒ Machine code

Data
⇒ Global variables

Stack
⇒ Local variables

Program counter (PC)
⇒ A pointer to the instrucƟon to be

executed



MulƟ-threaded processes
Fabio Pitari, Cineca

23

The process contains several concurrent
execuƟon flows (threads)

Each thread has its own program
counter (PC)
Each thread has its own private stack
(variables local to the thread)
The instrucƟons executed by a thread
can access:

the process global memory (data)
the thread local stack



OpenMP memory model
Fabio Pitari, Cineca

24

Shared-Local model

each thread is allowed to have a temporary view of the shared memory

each thread has access to a thread-private memory

two kinds of data-sharing aƩributes: private and shared



Distributed and shared memory
Fabio Pitari, Cineca

25



UMA and NUMA systems
Fabio Pitari, Cineca

26



Defined or undefined?
Fabio Pitari, Cineca

27

What's the result?

#include <stdio.h>
#include <omp.h>

void main(){
int a;
a = 0;
#pragma omp parallel
{

// omp_get_thread_num
// returns the id of the thread
a = a + omp_get_thread_num();

}
printf("%d\n", a);

}



Defined or undefined?
Fabio Pitari, Cineca

28

What's the result?

program race_condition
use omp_lib

integer :: a
a = 0

!$omp parallel
a = a + omp_get_thread_num()
!$omp end parallel

write(*,*) a
end program race_condition



Race condiƟon
Fabio Pitari, Cineca

29

A race condiƟon (or data race) is when two or more threads access the same
memory locaƟon:

asyncronously and,
without holding any common exclusive locks and,
at least one of the accesses is a write/store

In this case the resulƟng values are undefined



CriƟcal construct
Fabio Pitari, Cineca

30

The criƟcal construct is a possible
soluƟon to data races:

The block of code inside a
criƟcal construct is executed
by only one thread at a Ɵme

It locks the associated region

#include <stdio.h>
#include <omp.h>

void main(){
int a;
a = 0;
#pragma omp parallel
{

// omp_get_thread_num
// returns the id of the thread
#pragma omp critical
a = a + omp_get_thread_num();

}
printf("%d\n", a);

}



CriƟcal construct
Fabio Pitari, Cineca

31

The criƟcal construct is a possible
soluƟon to data races:

The block of code inside a
criƟcal construct is executed
by only one thread at a Ɵme

It locks the associated region

program race_condition
use omp_lib

integer :: a
a = 0

!$omp parallel
!$omp critical
a = a + omp_get_thread_num()
!$omp end critical
!$omp end parallel

write(*,*) a
end program race_condition



Hands on
Fabio Pitari, Cineca

32

Exercise 1

#include <stdio.h>
#ifdef _OPENMP
#include<omp.h>
#endif

int main(int argc, char* argv[])
{
#ifdef _OPENMP
int iam;
#pragma omp parallel

{ /* the parallel block starts here */
iam=omp_get_thread_num();

#pragma omp critical
printf("Hello from %d\n",iam);

} /* the parallel block ends here */

#else
printf("Hello, this is a serial program.\n");

#endif

return 0;
}

Compile

Run

Experiment with the
OMP_NUM_THREADS
variable.

Did you obtain the behaviour
you expected?



Hands on
Fabio Pitari, Cineca

33

Exercise 1

Program Hello_from_Threads
#ifdef _OPENMP

use omp_lib
#endif

implicit none

integer :: iam

#ifdef _OPENMP
!$omp parallel

iam=omp_get_thread_num()

!$omp critical
write(*,*) 'Hello from', iam

!$omp end critical

!$omp end parallel
#else

write(*,*) 'Hello, this is a serial program'
#endif
end program Hello_from_Threads

Compile

Run

Experiment with the
OMP_NUM_THREADS
variable.

Did you obtain the behaviour
you expected?



Shared and private variables
Fabio Pitari, Cineca

34

Inside a parallel region the scope of a variable can be shared or private.

Shared

There is only one instance of the variable.
DirecƟve: shared(a,b,c,…)

The variable is accessible by all threads in the team
Threads can read and write the variable simultaneously



Shared and private variables
Fabio Pitari, Cineca

35

Inside a parallel region the scope of a variable can be shared or private.

Private
Each thread has a copy of the variable. The variable is accessible only by the owner thread.

DirecƟve: private(a,b,c,…)

Values are undefined on entry and exit

DirecƟve: firstprivate(a,b,c,…)

variables are iniƟalized with the value that the original object had before entering the
parallel construct

DirecƟve: lastprivate(a,b,c,…)

the thread that executes the sequenƟally last iteraƟon or secƟon updates the value of
the variable



Data-sharing aƩributes
Fabio Pitari, Cineca

36

The default behaviours might be confusing:

Shared by default:

variables allocated outside
the parallel region

assumed size arrays

variables with save aƩributes
(Fortran)

Private by default:

variables allocated inside the parallel region

variables with automaƟc storage duraƟon

inner loop indexes in loop direcƟve when using
Fortran



Data-sharing aƩributes
Fabio Pitari, Cineca

37

Best pracƟce: Nullify the default with the clause default(none)
int a=0;
float b=1.5;
int c=3;
#pragma omp parallel default(none) shared(a) private(b) firstprivate(c)
{

// each thread can access to "a"
// each thread has its own copy of "b", with an undefined value
// each thread has its own copy of "c", with c=3

}



Hands on
Fabio Pitari, Cineca

38

SoluƟon of exercise 1

#include <stdio.h>
#ifdef _OPENMP
#include<omp.h>
#endif

int main(int argc, char* argv[])
{
#ifdef _OPENMP
int iam;
#pragma omp parallel private(iam)

{ /* the parallel block starts here */
iam=omp_get_thread_num();

#pragma omp critical
printf("Hello from %d\n",iam);

} /* the parallel block ends here */

#else
printf("Hello, this is a serial program.\n");

#endif

return 0;
}



Hands on
Fabio Pitari, Cineca

39

SoluƟon of exercise 1

Program Hello_from_Threads
#ifdef _OPENMP

use omp_lib
#endif

implicit none

integer :: iam

#ifdef _OPENMP
!$omp parallel private(iam)

iam=omp_get_thread_num()

!$omp critical
write(*,*) 'Hello from', iam

!$omp end critical

!$omp end parallel
#else

write(*,*) 'Hello, this is a serial program'
#endif
end program Hello_from_Threads



EssenƟal OpenMP parallelizaƟon
Fabio Pitari, Cineca

40

The parallel direcƟve has an implicit barrier at its end, i.e. all the threads have to wait that every other
thread complete its code block;

criƟcal doesn't have an implicit barrier at the end; it just executes the threads one by one;

In order to build an OpenMP parallelizaƟon it is enough to use:

parallel direcƟve;
criƟcal direcƟve;
omp_get_thread_num() funcƟon;
omp_get_num_threads() funcƟon;

However, this might imply to readapt the code (just like in MPI), while the aim of the OpenMP approach is to
keep the parallelizaƟon as simple as possible by sharing the work among the threads in an automaƟc way.
In order to automaƟze such distribuƟon you can use worksharing direcƟves.



Worksharing constructs



Worksharing constructs: rules
Fabio Pitari, Cineca

42

Distribute the execuƟon of the associated region

Rules

1. A worksharing region has no barrier on entry

2. An implied barrier exists at the end, unless nowait is specified

3. Each regionmust be encountered by all threads or none
⇒ Every thread must encounter the same sequence of worksharing regions and barrier

regions



Worksharing constructs: rules
Fabio Pitari, Cineca

43

Constructs

for/do loop
secƟons
single
workshare



Loop construct: syntax
Fabio Pitari, Cineca

44

C/C++

#pragma omp for [clause[[,] clause] ... ]
for-loops

Fortran

!$omp do [clause[[,] clause] ... ]
do-loops

!$omp end do [nowait]



Loop construct: syntax
Fabio Pitari, Cineca

45

Useful Clauses

schedule can be used to specify how iteraƟons are divided into chunks

collapse can be used to specify how many loops are parallelized



Loop construct
Fabio Pitari, Cineca

46

Rules

1. The iteraƟons of the loop are distributed over the threads that already exist in the team (scheduling clause can
manage their distribuƟon)

2. The iteraƟon variable in the for loop

if shared, is implicitlymade private
must not be modified during the execuƟon of the loop
has an unspecified value aŌer the loop

3. Only loops with canonical forms are allowed, i.e.:
the iteraƟon countmust be known before execuƟng the loops
the incremental expressionmust be addiƟon or subtracƟon expression.

4. By default (i.e. without the collapse clause) only the external loop is parallelized, whereas the internal ones are

executed sequenƟally for each thread. The indexes of the internal loops, if allocated outside the parallel region:

in C/C++ are shared by default (as usual)
in Fortran are made private by default



Loop construct: scheduling clause
Fabio Pitari, Cineca

47

C/C++

#pragma omp for schedule(kind[, chunk_size])
for-loops

Fortran

!$omp do schedule(kind[, chunk_size])
do-loops

[!$omp end do [nowait] ]



Loop construct: schedule kind
Fabio Pitari, Cineca

48

1. staƟc

if no chunk_size is specified the iteraƟons space is divided in
chunks of equal size and one chunk per thread
if chunk_size is specified, chunks are assigned to the threads
in a round-robin fashion

2. dynamic

iteraƟons are divided into chunks of size chunk_size with
default value 1
the chunks are assigned to the threads as they request them

3. guided

iteraƟons are divided into chunks of decreasing size, where
chunk_size controls the minimum size
the chunks are assigned to the threads as they request them



Loop construct: schedule kind
Fabio Pitari, Cineca

49

1. staƟc

if no chunk_size is specified the iteraƟons space is divided in
chunks of equal size and one chunk per thread
if chunk_size is specified, chunks are assigned to the threads
in a round-robin fashion

2. dynamic

iteraƟons are divided into chunks of size chunk_size with
default value 1
the chunks are assigned to the threads as they request them

3. guided

iteraƟons are divided into chunks of decreasing size, where
chunk_size controls the minimum size
the chunks are assigned to the threads as they request them



Loop construct: schedule kind
Fabio Pitari, Cineca

50

1. staƟc

if no chunk_size is specified the iteraƟons space is divided in
chunks of equal size and one chunk per thread
if chunk_size is specified, chunks are assigned to the threads
in a round-robin fashion

2. dynamic

iteraƟons are divided into chunks of size chunk_size with
default value 1
the chunks are assigned to the threads as they request them

3. guided

iteraƟons are divided into chunks of decreasing size, where
chunk_size controls the minimum size
the chunks are assigned to the threads as they request them



Loop construct: collapse clause
Fabio Pitari, Cineca

51

Example

#pragma omp parallel
{
#pragma omp for collapse(2)

for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {

A[i][j] = i*m + j;
}

}
}

The collapse clause indicates how many loops should be collapsed (including the outer loop)

Allows parallelizaƟon of perfectly nested rectangular loops
Compiler forms a single loop (e.g. of length nxm) and then parallelizes it

Useful if n < number of threads, so parallelizing the outer loop makes balancing the load difficult.



Loop construct: Ɵps and tricks
Fabio Pitari, Cineca

52

#pragma omp parallel
{

#pragma omp for
for (i=0; i<n; i++){

// do something
}

}

is equivalent to:

#pragma omp parallel for
for (i=0; i<n; i++){

// do something
}



SecƟons construct
Fabio Pitari, Cineca

53

C/C++

#pragma omp sections [clause[[,] clause]...]
{

#pragma omp section
structured-block

#pragma omp section
structured-block

...
}

1. sections is a non-iteraƟve worksharing
construct

it contains a set of
structured-blocks
each section is executed once by
only one of the threads

2. Scheduling of the secƟons is
implementaƟon defined

3. There is an implied barrier at the end of the
construct



SecƟons construct
Fabio Pitari, Cineca

54

Fortran

!$omp sections [clause[[,] clause]...]
!$omp section

structured-block
!$omp section

structured-block
...

!$omp end sections [nowait]

1. sections is a non-iteraƟve worksharing
construct

it contains a set of
structured-blocks
each section is executed once by
only one of the threads

2. Scheduling of the secƟons is
implementaƟon defined

3. There is an implied barrier at the end of the
construct



Single construct
Fabio Pitari, Cineca

55

C/C++

#pragma omp single [clause[[,] clause]...]
structured-block

Fortran

!$omp single [clause[[,] clause] ... ]
structured-block

!$omp end single [nowait]

1. The associated structured block is
executed by only one thread

2. The other threads wait at an implicit
barrier (unless a nowait clause is
specified)

3. The method of choosing a thread is
implementaƟon defined



Single vs Master construct
Fabio Pitari, Cineca

56

Note: The master construct is similar but specifies a structured block:

that is executed by the master thread
with no implied barrier on entry or exit (it isn't a worksharing construct)

C/C++

#pragma omp master
structured-block

Fortran

!$omp master
structured-block

!$omp end master

The advantage w.r.t. a single construct with nowait clause is that:

not being a worksharing construct can be nested inside one of them;

allows some operaƟons in some specific context where only the master is allowed to perform some
operaƟons (e.g. MPI communicaƟons when MPI_THREAD_FUNNELED is set)



Workshare construct
Fabio Pitari, Cineca

57

Note: only available in Fortran

Fortran

!$omp workshare
structured-block

!$omp end workshare [nowait]

Divides the lines of the code block into units of work, and each of them is then executed by a different thread. The allowed
instrucƟons are (mainly):

1. scalar assignments

2. array assignments (one element for thread)

3. FORALL statements

4. WHERE statements

When the code lines are not included in the cases above, they're treated as a single unit of work (and thus executed
sequenƟally by one thread).



Exercise 2
Fabio Pitari, Cineca

58

The code performs a serial matrix mulƟplicaƟon

Try to parallelize it with OpenMP, acƟng only on the most important loop

Try also to add the Ɵming funcƟons before and aŌer the loop and print the elapsed
Ɵme.



Exercise 2
Fabio Pitari, Cineca

59

C/C++

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(int argc, char **argv)
{

int n;
int i, j, k;

if(argc != 2) {
fprintf(stderr,"Usage: %s matrix size\n", argv[0]);
exit(EXIT_FAILURE);

}



Exercise 2
Fabio Pitari, Cineca

60

C/C++

n = atoi(argv[1]);
if ( n > 0) {

printf("Matrix size is %d\n",n);
}
else {

fprintf(stderr,"Error, matrix size is %d \n", n);
exit(EXIT_FAILURE);

}

double (*a)[n] = malloc(sizeof(double[n][n]));
double (*b)[n] = malloc(sizeof(double[n][n]));
double (*c)[n] = malloc(sizeof(double[n][n]));

if ( a == NULL || b == NULL || c == NULL) {
fprintf(stderr, "Not enough memory!\n");
exit(EXIT_FAILURE);



Exercise 2
Fabio Pitari, Cineca

61

C/C++

for (i=0; i<n; i++)
for (j=0; j<n; j++) {

a[i][j] = ((double)rand())/((double)RAND_MAX);
b[i][j] = ((double)rand())/((double)RAND_MAX);
c[i][j] = 0.0;

}

for (i=0; i<n; i++)
for (k=0; k<n; k++)

for (j=0; j<n; j++)
c[i][j] += a[i][k]*b[k][j];



Exercise 2
Fabio Pitari, Cineca

62

C/C++

//check a random element
i = rand()%n;
j = rand()%n;
double d = 0.0;
for (k=0; k<n; k++)

d += a[i][k]*b[k][j];

printf("Check on a random element: %18.9lE\n", fabs(d-c[i][j]));

return 0;

}



Exercise 2
Fabio Pitari, Cineca

63

Fortran

Program matrix_matrix_prod
implicit none
integer :: n
real(kind(1.d0)), dimension(:,:), allocatable :: a, b, c
real(kind(1.d0)) :: d
integer :: i, j, k, ierr
character(len=128) :: command
character(len=80) :: arg



Exercise 2
Fabio Pitari, Cineca

64

Fortran

call get_command_argument(0,command)
if (command_argument_count() /= 1) then

write(0,*) 'Usage:', trim(command), ' matrix size'
stop

else
call get_command_argument(1,arg)
read(arg,*) n

endif
if (n > 0 ) then

write(*,*) 'Matrix size is ', n
else

write(0,*) "Error, matrix size is ", n
endif



Exercise 2
Fabio Pitari, Cineca

65

Fortran

allocate(a(n,n),b(n,n),c(n,n),stat=ierr)

if(ierr/=0) STOP 'a,b,c matrix allocation failed'

call random_number(a)
call random_number(b)
c = 0.d0



Exercise 2
Fabio Pitari, Cineca

66

Fortran

do j=1, n
do k=1, n

do i=1, n
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do



Exercise 2
Fabio Pitari, Cineca

67

Fortran

call random_number(d)
i = int( d*n+1)
call random_number(d)
j = int( d*n+1)
d = 0.d0
do k=1, n

d = d + a(i,k)*b(k,j)
end do

write(*,*) "Check on a random element:" , abs(d-c(i,j))

end program matrix_matrix_prod



How to avoid data races



CriƟcal construct
Fabio Pitari, Cineca

69

C/C++

#pragma omp critical [clause [clause] ...]

Fortran

!$omp critical [clause [clause]...]

As previously shown, the block of code inside a criƟcal construct is executed by only one thread at Ɵme

This is clearly unefficient since it serializes the execuƟon of the process

It has to be considered an extreme soluƟon, but less invasive possibiliƟes has to be considered in the
first instance, like the following ones



ReducƟon clause: some facts
Fabio Pitari, Cineca

70

A reducƟon variable is used to accumulate a value from the different threads

double x[n];
double sum=0;
#pragma omp parallel for reduction (+:sum)
for (i=0; i<n; i++){

sum+=x[i]
}



ReducƟon clause: some facts
Fabio Pitari, Cineca

71

The reducƟon clause:

is valid both on parallel and work-sharing constructs

specifies an operator and one or more list items
C/C++ +, *, -, &, |, &&, ||, max, min

Fortran +, *, -, .and., .or., .eqv., .neqv., max, min, iand,
ior, ieor

The items that appears in a reduction clause must be shared
a local copy is created and iniƟalized based on the reducƟon operaƟon
updates occur on the local copy.
local copies are reduced into a single value and combined with the original global value.



ReducƟon clause: some facts
Fabio Pitari, Cineca

72

The reducƟon clause:

is valid both on parallel and work-sharing constructs

specifies an operator and one or more list items
C/C++ +, *, -, &, |, &&, ||, max, min

Fortran +, *, -, .and., .or., .eqv., .neqv., max, min, iand,
ior, ieor

The items that appears in a reduction clause must be shared
a local copy is created and iniƟalized based on the reducƟon operaƟon
updates occur on the local copy.
local copies are reduced into a single value and combined with the original global value.



ReducƟon clause: some facts
Fabio Pitari, Cineca

73

The reducƟon clause:

is valid both on parallel and work-sharing constructs

specifies an operator and one or more list items
C/C++ +, *, -, &, |, &&, ||, max, min

Fortran +, *, -, .and., .or., .eqv., .neqv., max, min, iand,
ior, ieor

The items that appears in a reduction clause must be shared
a local copy is created and iniƟalized based on the reducƟon operaƟon
updates occur on the local copy.
local copies are reduced into a single value and combined with the original global value.



ReducƟon clause: some facts
Fabio Pitari, Cineca

74

The reducƟon clause:

is valid both on parallel and work-sharing constructs

specifies an operator and one or more list items
C/C++ +, *, -, &, |, &&, ||, max, min

Fortran +, *, -, .and., .or., .eqv., .neqv., max, min, iand,
ior, ieor

The items that appears in a reduction clause must be shared
a local copy is created and iniƟalized based on the reducƟon operaƟon
updates occur on the local copy.
local copies are reduced into a single value and combined with the original global value.



Exercise 3
Fabio Pitari, Cineca

75

The code determines the value of π, by calculaƟng an integral between 0 and 1. The
integral is approximated as a sum of n intervals.

Parallelize it with OpenMP

Try also to solve the exercise without using the reducƟon clause



Exercise 3
Fabio Pitari, Cineca

76

C/C++

#include <stdio.h>
#include <time.h>

#define PI25DT 3.141592653589793238462643
#define INTERVALS 100000000

int main(int argc, char **argv)
{

long int i, intervals = INTERVALS;
double x, dx, f, sum, pi;
double time2;
time_t time1 = clock();
printf("Number of intervals: %ld\n", intervals);

sum = 0.0;
dx = 1.0 / (double) intervals;



Exercise 3
Fabio Pitari, Cineca

77

C/C++

for (i = 1; i <= intervals; i++) {
x = dx * ((double) (i - 0.5));
f = 4.0 / (1.0 + x*x);
sum = sum + f;

}



Exercise 3
Fabio Pitari, Cineca

78

C/C++

pi = dx*sum;

time2 = (clock() - time1) / (double) CLOCKS_PER_SEC;

printf("Computed PI %.24f\n", pi);
printf("The true PI %.24f\n\n", PI25DT);
printf("Elapsed time (s) = %.2lf\n", time2);

return 0;
}



Exercise 3
Fabio Pitari, Cineca

79

Fortran

program pi
implicit none

integer(selected_int_kind(18)) :: i
integer(selected_int_kind(18)), parameter :: intervals=1e8

real(kind(1.d0)) :: dx,sum,x
real(kind(1.d0)) :: f,pi

real(kind(1.d0)), parameter :: PI25DT = acos(-1.d0)
real :: time1, time2

call cpu_time(time1)

print *, 'Number of intervals: ', intervals
sum=0.d0
dx=1.d0/intervals



Exercise 3
Fabio Pitari, Cineca

80

Fortran

do i=1,intervals
x=dx*(i-0.5d0)
f=4.d0/(1.d0+x*x)
sum=sum+f

end do



Exercise 3
Fabio Pitari, Cineca

81

Fortran

pi=dx*sum

call cpu_time(time2)

PRINT '(a13,2x,f30.25)',' Computed PI =', pi
PRINT '(a13,2x,f30.25)',' The True PI =', PI25DT
PRINT *, ' '
PRINT *, 'Elapsed time ', time2-time1 ,' s'

end program



Barrier construct
Fabio Pitari, Cineca

82

The barrier construct specifies an explicit barrier at the point at which the construct appears

Reminder: implicit barriers are assumed at the end of a worksharing construct, and can be removed via
the nowait clause

Note: when not necessary, a barrier can cause slowdowns

C/C++

#pragma omp barrier

Fortran

!$omp barrier

Example: waiƟng for the master

int counter = 0;
#pragma omp parallel
{
#pragma omp master

counter = 1;
#pragma omp barrier

printf("%d\n", counter);
}



Atomic construct
Fabio Pitari, Cineca

83

C/C++

#pragma omp atomic [read | write | update | capture]
expression -stmt

Fortran
!$omp atomic [read | write | update | capture]

expression -stmt
!$omp end atomic



Atomic construct
Fabio Pitari, Cineca

84

The atomic construct:

Ensures a specific storage locaƟon to be updated atomically, i.e. does not expose it
to mulƟple, simultaneous wriƟng threads
Possible clauses are:
read forces an atomic read regardless of the machine word size

write forces an atomic write regardless of the machine word size
update forces an atomic update (default)
capture same as an update, but captures original or final value (e.g. allows a = b++ with both a

and b atomically updated)

Accesses to the same locaƟon must have compaƟble types



Atomic construct
Fabio Pitari, Cineca

85

The atomic construct:

Ensures a specific storage locaƟon to be updated atomically, i.e. does not expose it
to mulƟple, simultaneous wriƟng threads

Possible clauses are:
read forces an atomic read regardless of the machine word size

write forces an atomic write regardless of the machine word size
update forces an atomic update (default)
capture same as an update, but captures original or final value (e.g. allows a = b++ with both a

and b atomically updated)

Accesses to the same locaƟon must have compaƟble types



Atomic construct
Fabio Pitari, Cineca

86

The atomic construct:

Ensures a specific storage locaƟon to be updated atomically, i.e. does not expose it
to mulƟple, simultaneous wriƟng threads
Possible clauses are:
read forces an atomic read regardless of the machine word size

write forces an atomic write regardless of the machine word size
update forces an atomic update (default)
capture same as an update, but captures original or final value (e.g. allows a = b++ with both a

and b atomically updated)

Accesses to the same locaƟon must have compaƟble types



Atomic construct
Fabio Pitari, Cineca

87

The atomic construct:

Ensures a specific storage locaƟon to be updated atomically, i.e. does not expose it
to mulƟple, simultaneous wriƟng threads
Possible clauses are:
read forces an atomic read regardless of the machine word size

write forces an atomic write regardless of the machine word size
update forces an atomic update (default)
capture same as an update, but captures original or final value (e.g. allows a = b++ with both a

and b atomically updated)

Accesses to the same locaƟon must have compaƟble types



Exercise 4
Fabio Pitari, Cineca

88

The code solves a 2-D Laplace equaƟon by using a relaxaƟon scheme.

Parallelize the code by using OpenMP direcƟves. Work on the most computaƟonally
intensive loop

Try to include also the while loop in the parallel region



Exercise 5
Fabio Pitari, Cineca

89

Try to parallelize your heaƞlow code with OpenMP worksharing direcƟves; take a
look at src/cxx/grid.cpp
Work on the most computaƟonally intensive loops



SIMD



SIMD: basic concepts
Fabio Pitari, Cineca

91

SIMD : Single InstrucƟon stream, MulƟple Data stream

a vector register (or SIMD register) can hold many values of a single type;

each value in a SIMD register is called SIMD lane or simply lane

SIMD instrucƟons are hardware instrucƟons that modify the vector registers

SIMD instrucƟon can operate on several lanes (Ɵpically on all the lanes) of a SIMD
register at the same Ɵme



Hardware evoluƟon (e.g. Intel)
Fabio Pitari, Cineca

92



How vectorizaƟon works
Fabio Pitari, Cineca

93

VectorizaƟon operates on enƟre blocks of data
(vectors)

At CPU level, a single instrucƟon operates upon
mulƟple data elements concurrently

This increase the FLOP/s rate of the processor

SIMD instrucƟons use special SIMD registers
containing mulƟple data elements

Vectors help to make good use of the memory
hierarchy, and to write code which has good
access paƩerns to maximise memory bandwidth



AutovectorizaƟon
Fabio Pitari, Cineca

94

Compiler can detect loops or blocks of codes that can be vectorized

Auto-vectorizaƟon relies on staƟc analysis

Increased complexity of instrucƟons makes it hard for the compiler to select proper instrucƟons

Code paƩern needs to be recognized by the compiler

Precision requirements oŌen inhibit SIMD code gen

Note
A common compilers' feature is to print a brief report related to vectorizaƟon

GNU (gcc, g++, gfortran) -ftree-vectorize -ftree-vectorizer-verbose (automaƟcally enabled with
-O3)

Intel (icc, icpc, ifort) -qopt-report=2 -qopt-report-phase=vec



AutovectorizaƟon
Fabio Pitari, Cineca

95

Modern compilers are very good at
automaƟcally vectorizing the loops

Compilers need to be sure it's safe to vectorize

When vectorizaƟon is not considered safe,
autovectorizaƟon is skipped

Some reasons for failing vectorizaƟon

Data dependency

Alignement (see next slide)

FuncƟon calls in the loop

CondiƟonal branches

Non-constant bounds of the
loops

Mixed data types

Non-unit stride between two
elements

Loop body too complex
(register pressure)

VectorizaƟon seems
inefficient

…

Note
You can try to understand why autovectorizaƟon fails increasing verbosity of its output

GNU (gcc, g++, gfortran) -ftree-vectorizer-verbose=N -fopt-info-all=filename
Intel (icc, icpc, ifort) -qopt-report=5



AutovectorizaƟon
Fabio Pitari, Cineca

96

SomeƟmes the compiler needs help in con rming
loops are vectorizeable

To get the full bene t from SIMD, the starƟng
address of the vectors may need to be aligned
on the correct boundary

The address in memory must be a mulƟple of
the vector length in bytes

OpenMP provides the simd direcƟve, in order to manually tune the vectorizaƟon of the
loops by the compiler



OpenMP SIMD direcƟve
Fabio Pitari, Cineca

97

simd direcƟve in OpenMP cut loops into chunks in order to fit them in vector registers

no thread parallelizaƟon of the loop body

C/C++

#pragma omp simd [clause, ...]
// structured block

Fortran

!$omp simd [clause, ...]
! structured block

!$omp end simd



OpenMP SIMD direcƟve: example
Fabio Pitari, Cineca

98

C/C++

#pragma omp simd
for ( int i=0 ; i<n ; i++ )

c[i] = a[i] + b[i];

Fortran

!$omp simd
do i = 1,n

c[i] = a[i] + b[i]
!$omp end simd



simd clauses: safelen
Fabio Pitari, Cineca

99

safelen allows to indicate the number of iteraƟons that will run concurrently without breaking a dependence;
i.e. the distance between to iteraƟons in which is to safe to vectorize

C/C++

#pragma omp simd safelen(4)
for ( int i=1; i<SIZE-4 ; i++ ) {

A[i] = A[i] + A[i+4];
}

Fortran

!$omp simd safelen(4)
do i=1,N-4

A(i) = A(i) + A(i+4)
end do
!$omp end simd

it can be combined with any reducƟon or data-sharing clauses already seen

hardcoding explicit vector lengths may bring to code obsolescence, as vector lengths conƟnuously
change



simd clauses: linear
Fabio Pitari, Cineca

100

The linear clause allows to workaround some loop dependencies among integer variables that otherwise
would break vectorizaƟon.

Note
linear provides a superset of private clause funcƟonaliƟes

Example

Arrays a and c are accessed through the loop variable i

Array b is indexed through another variable j

j has a linear relaƟonship with the loop iteraƟon
variable i, which is incremented by 2 in each iteraƟon,
while j is incremented by one

#pragma omp simd linear(j:1)
for (int i=offset; i<N; i+=2)

c[i] = a[j++] + b[i];



OpenMP SIMD worksharing construct
Fabio Pitari, Cineca

101

There is also an addiƟonal construct for simd which combines thread chunks with simd vectorizaƟon

1. loops are divided into chunks (just like in the loop worksharing construct)

2. each thread is then vectorized (just like in the simd construct)

C/C++

#pragma omp for simd
for ( int i=0 ; i<n ; i++ )

c[i] = a[i] + b[i];

Fortran
!$omp do simd
do i = 1,n

c[i] = a[i] + b[i]
!$omp end do simd



SIMD funcƟon vectorizaƟon
Fabio Pitari, Cineca

102

The declare simd construct allows to point out to the compiler that some funcƟon body
can be vectorized, so that the funcƟon call inside a loop does not inhibit the loop
vectorizaƟon

the funcƟon body must be a structured block

whatever alters the execuƟon of concurrent
iteraƟons on the SIMD unit (e.g. branching in
and out from the funcƟon) breaks the
compaƟbility with the construct

declare simd only combines with simd direcƟve
(outer from the funcƟon call)

Example

#pragma omp declare simd
int min (int a, int b) {

return a < b ? a : b;
}

#pragma omp simd
for (i=0; i<N; i++)

c[i] = min(a[i], b[i]);



OpƟonal exercise
Fabio Pitari, Cineca

103

Try to repeat the previous exercises using simd parallelizaƟon

Compare the results of vectorizaƟon with the ones of worksharing approach



Tasks



The task construct
Fabio Pitari, Cineca

105

C/C++

#pragma omp task [clause]
// structured block

Fortran

!$omp task [ clauses ]
! structured block

!$omp end task

The task construct Ɵmeline:

2008 Introduced in OpenMP 3.0

2013 Improved in OpenMP 4.0

2018 Further improvements in OpenMP 5.0 (notably reducƟon on tasks)

Useful for dealing with:

large and complex applicaƟons
load unbalancing
irregular and dynamic structures

unbounded loops

recursive funcƟons



The task construct
Fabio Pitari, Cineca

106

What is a task?

Is a block of instrucƟons and data that is scheduled to be executed by a thread,
concurrently with other tasks

1. A parallel region creates a team of
threads

2. A single thread then creates the tasks,
adding them to a queue that belongs to
the team

3. The task scheduler assigns the tasks in
the queue to the threads in the team



The task construct
Fabio Pitari, Cineca

107

What is a task?

Is a block of instrucƟons and data that is scheduled to be executed by a thread,
concurrently with other tasks

1. A parallel region creates a team of
threads

2. A single thread then creates the tasks,
adding them to a queue that belongs to
the team

3. The task scheduler assigns the tasks in
the queue to the threads in the team



The task construct
Fabio Pitari, Cineca

108

What is a task?

Is a block of instrucƟons and data that is scheduled to be executed by a thread,
concurrently with other tasks

1. A parallel region creates a team of
threads

2. A single thread then creates the tasks,
adding them to a queue that belongs to
the team

3. The task scheduler assigns the tasks in
the queue to the threads in the team



The task construct
Fabio Pitari, Cineca

109

What is a task?

Is a block of instrucƟons and data that is scheduled to be executed by a thread,
concurrently with other tasks

1. A parallel region creates a team of
threads

2. A single thread then creates the tasks,
adding them to a queue that belongs to
the team

3. The task scheduler assigns the tasks in
the queue to the threads in the team



Tasks vs "classical" OpenMP direcƟves
Fabio Pitari, Cineca

110

Tasks parallelizaƟon let the system to decide at runƟme when to run a task with respect to
avaliable resources, which add more flexibility and asynchronicity to the execuƟon

Note

When a parallel region is created, an implicit task is created behind the scenes with a set
of instrucƟons, which in the early stage are distributed among the avaliable threads. In
contrast, using the task direcƟve allows to queue an explicit task which will be assigned at
some point to an idle thread.



Why tasks?
Fabio Pitari, Cineca

111

Tasks are useful to do things that are hard or impossible with the loop and section constructs

Linked list example

#pragma omp parallel // create a team of threads
{
#pragma omp single // where a single thread
{

p = head_of_list(); // starts from the head of the list
while (!end_of_list(p)){ // and, until the end of the list,

#pragma omp task // submits a task
process( p ); // that will process the element

p = next_element(p); // and goes to the next element
}

}
}



Why tasks?
Fabio Pitari, Cineca

112

Example: Sudoku soluƟon

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Worksharing approach

Brute force is a recursive problem

External loop on each blank box

Internal loop from 1 to 9 for each blank box (open a parallel region)

You need to check if each number is valid, so you need to fill the next
blank box (open a nested parallel region) and check every combinaƟon

…and so on for every blank box (which in turn open a further nested
parallel region)

This (inefficient) procedure quickly overcrowd the available resources



Why tasks?
Fabio Pitari, Cineca

113

Example: Sudoku soluƟon

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Tasking approach
Each candidate combinaƟon of numbers is independent and thus can be evaluated in parallel

External loop on each blank box

A single thread is selected in the parallel region in order to start the algorithm

#pragma omp parallel
#pragma omp single

Internal loop from 1 to 9 for each blank box schedule a new task

#pragma omp task

At the end of the recursion a copy of the board with a different combinaƟon of numbers is assigned to a
different task

master thread assign tasks as soon a thread is idle

wait for compleƟon; tasks synchronizaƟon can be achieved via the taskwait direcƟve

#pragma omp taskwait



Why tasks?
Fabio Pitari, Cineca

114

Example: Sudoku soluƟon

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Tasking approach
Each candidate combinaƟon of numbers is independent and thus can be evaluated in parallel

External loop on each blank box

A single thread is selected in the parallel region in order to start the algorithm

#pragma omp parallel
#pragma omp single

Internal loop from 1 to 9 for each blank box schedule a new task

#pragma omp task

At the end of the recursion a copy of the board with a different combinaƟon of numbers is assigned to a
different task

master thread assign tasks as soon a thread is idle

wait for compleƟon; tasks synchronizaƟon can be achieved via the taskwait direcƟve

#pragma omp taskwait



Why tasks?
Fabio Pitari, Cineca

115

Example: Sudoku soluƟon

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Tasking approach
Each candidate combinaƟon of numbers is independent and thus can be evaluated in parallel

External loop on each blank box

A single thread is selected in the parallel region in order to start the algorithm

#pragma omp parallel
#pragma omp single

Internal loop from 1 to 9 for each blank box schedule a new task

#pragma omp task

At the end of the recursion a copy of the board with a different combinaƟon of numbers is assigned to a
different task

master thread assign tasks as soon a thread is idle

wait for compleƟon; tasks synchronizaƟon can be achieved via the taskwait direcƟve

#pragma omp taskwait



Why tasks?
Fabio Pitari, Cineca

116

Example: Sudoku soluƟon

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Tasking approach
Each candidate combinaƟon of numbers is independent and thus can be evaluated in parallel

External loop on each blank box

A single thread is selected in the parallel region in order to start the algorithm

#pragma omp parallel
#pragma omp single

Internal loop from 1 to 9 for each blank box schedule a new task

#pragma omp task

At the end of the recursion a copy of the board with a different combinaƟon of numbers is assigned to a
different task

master thread assign tasks as soon a thread is idle

wait for compleƟon; tasks synchronizaƟon can be achieved via the taskwait direcƟve

#pragma omp taskwait



Why tasks?
Fabio Pitari, Cineca

117

Example: Sudoku soluƟon

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Tasking approach
Each candidate combinaƟon of numbers is independent and thus can be evaluated in parallel

External loop on each blank box

A single thread is selected in the parallel region in order to start the algorithm

#pragma omp parallel
#pragma omp single

Internal loop from 1 to 9 for each blank box schedule a new task

#pragma omp task

At the end of the recursion a copy of the board with a different combinaƟon of numbers is assigned to a
different task

master thread assign tasks as soon a thread is idle

wait for compleƟon; tasks synchronizaƟon can be achieved via the taskwait direcƟve

#pragma omp taskwait



Tasks are not always the soluƟon
Fabio Pitari, Cineca

118

Fibonacci example

int fib(int n) {
if (n < 2) return n;
int x, y;
#pragma omp task shared(x)
{

x = fib(n - 1);
}
#pragma omp task shared(y)
{

y = fib(n - 2);
}
#pragma omp taskwait
return x+y;

}
In this case the approach is recursive again, but the recursion levels are not independent one to each other.



Tasks data scoping
Fabio Pitari, Cineca

119

int a=1;
void foo(){

int b=2, c=3;
#pragma omp parallel shared(b) private(c)
{

int d=4;
#pragma omp task
{
int e=5;
// a is shared
// b is shared
// c is firstprivate
// d is firstprivate
// e is private
}

}
}

Rules (if default is not specified):

1. A variable that is determined to be
shared in all enclosing constructs is
shared

2. It is firstprivate otherwise (this
avoid undefined values if switching
on a different thread)



ReducƟon with tasks
Fabio Pitari, Cineca

120

StarƟng from OpenMP 5.0, it is possible to use reducƟon among tasks, as long as the
keyword task is specified together with the reducƟon clause

C/C++

double x[n];
double sum=0;
#pragma omp parallel for reduction (task, +:sum)
for (i=0; i<n; i++){

#pragma omp task in_reduction(+:sum)
sum+=x[i]

}



Tasks synchronizaƟon: unƟed clause
Fabio Pitari, Cineca

121

Under some condiƟon some tasks can be suspended, for instance an outer task
in which is invoked an inner one, or explicitly with the taskyeld direcƟve

C/C++

#pragma omp taskyeld

Fortran

!$omp taskyeld

By default,a suspended task is bonded to the thread on which it was iniƟalited,
which means that such thread will stay idle unƟl the task is restarted (deadlock
risk)

The unƟed clause removes this default behaviour and let the thread free while
suspended; it will restart on any idle thread (this might bring to some
inconsistencies with thread-related clauses not treated here)

Example

#pragma omp parallel
#pragma omp single
{

#pragma omp task untied
{

foo();
#pragma omp taskyeld
bar();

}
}



Tasks synchronizaƟon: taskwait
Fabio Pitari, Cineca

122

taskwait is the equivalent of barrier
for tasks

it only waits for tasks with the same
parent thread, but not for their nested
tasks; use taskgroups to handle more
complex schemes

Note

barrier direcƟve waits for all the tasks in all
the threads

Example

#pragma omp parallel
#pragma omp single
{

#pragma omp task
{

#pragma omp task
// waited
#pragma omp task
// waited
{

#pragma omp task
// not waited

}
#pragma omp taskwait

}
}



Tasks synchronizaƟon: taskgroups
Fabio Pitari, Cineca

123

taskgroup group a set of tasks and add an
implicit barrier at the end

taskgroup also allows reducƟon among tasks
(starƟng from OpenMP 5.0)

notably, this allows reducƟon among while loops

C/C++

#pragma omp taskgroup task_reduction(+:sum)
{
// some code, e.g. while loop

#pragma omp task in_reduction(+:sum)
sum += //...

}

Example

#pragma omp parallel
#pragma omp single
{

#pragma omp taskgroup
{

#pragma omp task
// waited
#pragma omp task
// waited
{

#pragma omp task
// waited

}
} // implicit taskwait

}



Tasks synchronizaƟon: depend
Fabio Pitari, Cineca

124

void foo(){
int a, b=2, c=3;
#pragma omp parallel
{
#pragma omp single
{

#pragma omp task
b=b+7;
#pragma omp task
c=c+4;
//-- some kind of barrier
#pragma omp task
a=b+c;

}
}

}

1. taskwait: waits for tasks
spawned by current task and itself

#pragma omp taskwait

2. depend: explicit declaraƟon of
tasks dependencies. Some more
words to say ...



Tasks synchronizaƟon: depend
Fabio Pitari, Cineca

125

void foo(){
int a, b=2, c=3;
#pragma omp parallel
{
#pragma omp single
{

#pragma omp task depend(out:b)
b=b+7;
#pragma omp task depend(out:c)
c=c+4;

#pragma omp task depend(in:b,c)
a=b+c;

}
}

}

in it will be a dependent task of all previously
generated sibling tasks that reference at
least one of the list items in an out or
inout clause

out it will be a dependent task of all previously
generated sibling tasks that reference at
least one of the list items in an in or
inout clause

inout it will be a dependent task of all previously
generated sibling tasks that reference at
least one of the list items in an in, out or
inout clause



The depend clause: an example
Fabio Pitari, Cineca

126

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

void process(int v[6], int& tot){

v[0]=sum(v[0],v[1]);

v[4]=sum(v[4],1);

v[2]=sum(v[3],v[0]);

v[5]=sum(v[2],v[4]);

v[1]=sum(v[0],v[4]);

v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}



The depend clause: an example
Fabio Pitari, Cineca

127

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

Execution time:
12s

Output:
tot = 345

void process(int v[6], int& tot){

v[0]=sum(v[0],v[1]);

v[4]=sum(v[4],1);

v[2]=sum(v[3],v[0]);

v[5]=sum(v[2],v[4]);

v[1]=sum(v[0],v[4]);

v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}



The depend clause: an example
Fabio Pitari, Cineca

128

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

v[0]=sum(v[0],v[1]);

v[4]=sum(v[4],1);

v[2]=sum(v[3],v[0]);

v[5]=sum(v[2],v[4]);

v[1]=sum(v[0],v[4]);

v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}
}
}



The depend clause: an example
Fabio Pitari, Cineca

129

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

Execution time:
12s

Output:
tot = 345

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

v[0]=sum(v[0],v[1]);

v[4]=sum(v[4],1);

v[2]=sum(v[3],v[0]);

v[5]=sum(v[2],v[4]);

v[1]=sum(v[0],v[4]);

v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}
}
}



The depend clause: an example
Fabio Pitari, Cineca

130

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

#pragma omp task depend(inout:v[0]) depend(in:v[1])
v[0]=sum(v[0],v[1]);

v[4]=sum(v[4],1);

v[2]=sum(v[3],v[0]);

v[5]=sum(v[2],v[4]);

v[1]=sum(v[0],v[4]);

v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}
}
}



The depend clause: an example
Fabio Pitari, Cineca

131

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

#pragma omp task depend(inout:v[0]) depend(in:v[1])
v[0]=sum(v[0],v[1]);
#pragma omp task depend(inout:v[4])
v[4]=sum(v[4],1);
#pragma omp task depend(in:v[0],v[3]) depend(out:v[2])
v[2]=sum(v[3],v[0]);
#pragma omp task depend(in:v[2],v[4]) depend(out:v[5])
v[5]=sum(v[2],v[4]);
#pragma omp task depend(in:v[0],v[4]) depend(out:v[1])
v[1]=sum(v[0],v[4]);
#pragma omp task depend(inout:v[3])
v[3]=sum(v[3],-3);
#pragma omp taskwait
for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}
}
}



The depend clause: an example
Fabio Pitari, Cineca

132

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

Execution time:
9s

Output:
tot = 345

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

#pragma omp task depend(inout:v[0]) depend(in:v[1])
v[0]=sum(v[0],v[1]);
#pragma omp task depend(inout:v[4])
v[4]=sum(v[4],1);
#pragma omp task depend(in:v[0],v[3]) depend(out:v[2])
v[2]=sum(v[3],v[0]);
#pragma omp task depend(in:v[2],v[4]) depend(out:v[5])
v[5]=sum(v[2],v[4]);
#pragma omp task depend(in:v[0],v[4]) depend(out:v[1])
v[1]=sum(v[0],v[4]);
#pragma omp task depend(inout:v[3])
v[3]=sum(v[3],-3);
#pragma omp taskwait
for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}
}
}



The depend clause: an example
Fabio Pitari, Cineca

133

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

#pragma omp task depend(inout:v[0]) depend(in:v[1])
v[0]=sum(v[0],v[1]);
#pragma omp task depend(inout:v[4])
v[4]=sum(v[4],1);
#pragma omp task depend(in:v[0],v[3]) depend(out:v[2])
v[2]=sum(v[3],v[0]);
#pragma omp task depend(in:v[2],v[4]) depend(out:v[5])
v[5]=sum(v[2],v[4]);
#pragma omp task depend(in:v[0],v[4]) depend(out:v[1])
v[1]=sum(v[0],v[4]);
#pragma omp task depend(inout:v[3])
v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)
#pragma omp task depend(in:v[i])
{

#pragma omp atomic update
tot+=square(v[i]);

}
}
}
}



The depend clause: an example
Fabio Pitari, Cineca

134

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

Execution time:
4s

Output:
tot = 345

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

#pragma omp task depend(inout:v[0]) depend(in:v[1])
v[0]=sum(v[0],v[1]);
#pragma omp task depend(inout:v[4])
v[4]=sum(v[4],1);
#pragma omp task depend(in:v[0],v[3]) depend(out:v[2])
v[2]=sum(v[3],v[0]);
#pragma omp task depend(in:v[2],v[4]) depend(out:v[5])
v[5]=sum(v[2],v[4]);
#pragma omp task depend(in:v[0],v[4]) depend(out:v[1])
v[1]=sum(v[0],v[4]);
#pragma omp task depend(inout:v[3])
v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)
#pragma omp task depend(in:v[i])
{

#pragma omp atomic update
tot+=square(v[i]);

}
}
}
}



Taskloop direcƟve
Fabio Pitari, Cineca

135

Loops can be parallelized with tasks not only with an explicit task in the middle, but
also with an external taskloop direcƟve

Loop chunks are scheduled on tasks

Implcitely create a taskgroup

C/C++

#pragma omp taskloop
// for loop

Fortran

!$omp taskloop
! do loop
!$omp end taskloop

! Don't forget to enclose it in a single (or master) direcƟve!



Taskloop direcƟve: clauses
Fabio Pitari, Cineca

136

grainsize(N) : each task contains at least N iteraƟons (but no more than 2N)

num_tasks(M) : create M tasks (with at least one iteraƟon)

(If none of the above clauses is specified, the number of iteraƟon per task is implementaƟon defined)

nogroup : remove the implicit barrier at the end

collapse(P) : P nested loop levels are parallelized (and not just the outer loop)

reducƟon

ReducƟon among the tasks on the specified
variable and operaƟon

#pragma omp taskloop reduction(+:sum)

in_reducƟon

ReducƟon from an outer taskgroup

#pragma omp taskgroup task_reduction(+:sum)
{

#pragma omp taskloop in_reduction(+:sum)
for (i=0, i<N, i++)

sum += a[i]
}



taskloop simd direcƟve
Fabio Pitari, Cineca

137

taskloop and simd can be combined in the composite construct taskloop simd

each task of the taskloop will be vectorized (or tried to)

every clause of both simd and taskloop can be applied

C/C++

#pragma omp taskloop simd
// for loop

Fortran

!$omp taskloop simd
! do loop
!$omp end taskloop



OpƟonal exercise
Fabio Pitari, Cineca

138

Try to repeat the previous exercises using tasks parallelizaƟon

Compare the results of tasks parallelizaƟon with the ones of worksharing approach



Conclusions



Some important notes
Fabio Pitari, Cineca

140

Always check the OpenMP version installed

If interested, www.openmp.org is your bible!

Some material, in parƟcular for the Tasks secƟon, is derived from the Eurofusion
Webinars by ChrisƟan Terboven and Michael Klemm, whom I thank. If you want to
go deeper with OpenMP topics you can find their very good lectures in the
"Webinars on GPUs EUROfusion" youtube channel



Credits
Fabio Pitari, Cineca

141

A special thank to Paola Arcuri, Gianfranco Abrusci, Alessandro Colombo and to all the
colleagues who contributed more or less synchronously and more or less consciously to
these slides so far:

Mirko Cestari, NiƟn Shukla, Fabio Affinito, CrisƟano Padrin, Neva Besker, Pietro Bonfá,
Gian Franco Marras, Marco Comparato, Massimiliano Culpo, Giorgio AmaƟ, Federico
Massaioli, Marco Rorro, ViƩorio Ruggiero, Francesco Salvadore, Claudia Truini, etc



Fabio Pitari, Cineca

142

Thank you for your aƩenƟon!
https://sctrain.eu/

https://sctrain.eu/

	Introduction
	OpenMP vs MPI
	OpenMP execution model
	OpenMP programming model
	OpenMP memory model

	Worksharing constructs
	Worksharing constructs rules
	for/do loop
	sections
	single
	workshare

	How to avoid data races
	Critical construct
	Reduction clause
	Barrier construct
	Atomic construct

	SIMD
	Basic concepts
	Autovectorization
	OpenMP simd directive
	Vectorization of functions

	Tasks
	Basic concepts
	Data scopes and reduction
	Tasks synchronization
	Taskloops

	Conclusions
	


