
Introduc on to OpenMP
Fabio Pitari, Cineca

January/2022

Introduc on
OpenMP vs MPI
OpenMP execu on model
OpenMP programming model
OpenMP memory model

Worksharing constructs
Worksharing constructs rules
for/do loop
sec ons
single
workshare

How to avoid data races
Cri cal construct

Reduc on clause
Barrier construct
Atomic construct

SIMD
Basic concepts
Autovectoriza on
OpenMP simd direc ve
Vectoriza on of func ons

Tasks
Basic concepts
Data scopes and reduc on
Tasks synchroniza on
Taskloops

Conclusions

Introduc on

Disadvantages of MPI
Fabio Pitari, Cineca

4

⇒ The data to be shared must be exchanged with explicit inter-process communica ons

! It is in charge to the programmer to design and implement the data exchange
between process (taking care of work balance)
You can not adopt a strategy of incremental paralleliza on
⇒ The communica on structure of the en re program has to be implemented

It is difficult to maintain a single version of the code for the serial and MPI program
⇒ Addi onal variables are needed
⇒ Need to add a lot of boilerplate code

What is OpenMP?
Fabio Pitari, Cineca

5

De-facto standard Applica on Program Interface (API) to write shared memory
parallel applica ons in C, C++ and Fortran

Consists of compilers direc ves, run- me rou nes and environment variables
"Open specifica ons for Mul Processing" maintained by the OpenMP Architecture
Review Board (h p://www.openmp.org)

Founding concepts

The "workers" who do the work in parallel (thread) "cooperate" through shared memory

Memory accesses instead of explicit messages

"local" model paralleliza on of the serial code

It allows an incremental paralleliza on

History
Fabio Pitari, Cineca

6

Born to sa sfy the need of unifica on of proprietary solu ons
The past

October 1997 - Fortran version 1
October 1998 - C/C++ version 1
November 1999 - Fortran version 1.1 (interpreta ons)
November 2000 - Fortran version 2
March 2002 - C/C++ version 2
May 2005 - combined C/C++ and Fortran version 2
May 2008 - version 3.0
July 2011 - version 3.1

History
Fabio Pitari, Cineca

7

The present
July 2013 - version 4.0
November 2015 - version 4.5
November 2018 - version 5.0
November 2020 - version 5.1
November 2021 - version 5.2

MPI Execu on model
Fabio Pitari, Cineca

8

MPI model

Everything lies in a huge parallel region where the same code is executed by all the ranks

Comunica on among ranks has to be explicitely built when needed

OpenMP Execu on model
Fabio Pitari, Cineca

9

Fork-Join model

Fork At the beginning of a parallel region the master thread creates a team of threads composed
by itself and by a set of other threads

Join At the end of the parallel region the thread team ends the execu on and only the master
thread con nues the execu on of the (serial) program

OpenMP: Hello world
Fabio Pitari, Cineca

10

A set of instruc ons can be executed on the whole set of threads using the parallel
direc ve

C/C++

#include <stdio.h>
int main () {

/* Serial part */
{

printf("Hello world\n");
}
/* Serial part */
return 0;

}

OpenMP: Hello world
Fabio Pitari, Cineca

11

A set of instruc ons can be executed on the whole set of threads using the parallel
direc ve

C/C++

#include <stdio.h>
int main () {

/* Serial part */
#pragma omp parallel

{
printf("Hello world\n");

}
/* Serial part */
return 0;

}

OpenMP: Hello world
Fabio Pitari, Cineca

12

A set of instruc ons can be executed on the whole set of threads using the parallel
direc ve

Fortran

PROGRAM HELLO
! Serial code

Print *, "Hello World!!!"
! Serial code
END PROGRAM HELLO

OpenMP: Hello world
Fabio Pitari, Cineca

13

A set of instruc ons can be executed on the whole set of threads using the parallel
direc ve

Fortran

PROGRAM HELLO
! Serial code
!$OMP PARALLEL

Print *, "Hello World!!!"
!$OMP END PARALLEL
! Serial code
END PROGRAM HELLO

Programming model
Fabio Pitari, Cineca

14

Compiler direc ves

C/C++

#pragma omp <directive > [clause [clause] ...]

Fortran

!$omp <directive > [clause [clause]...]

directive mark the block of code that should be made parallel
clause add informa on to the direc ves

⇒ Variables handling and scoping (shared, private, default)
⇒ Execu on control (how many threads, work distribu on...)

Programming model
Fabio Pitari, Cineca

15

Note

GNU (gcc, g++, gfortran) -fopenmp
Intel (icc, icpc, ifort) -qopenmp

Programming model
Fabio Pitari, Cineca

16

Compiler direc ves
Environment variables

OMP_NUM_THREADS size set the number of threads
OMP_DYNAMIC true|false set the number of threads automa cally
OMP_PLACES cores|threads|sockets set the place where to allocate threads

OMP_PROC_BIND true|false|close|spread bound threads to such place
OMP_NESTED true|false allows nested parallelism

Other commonly used variables will be clearer later (listed here for reference):

OMP_STACKSIZE size [B|K|M|G] size of the stack for threads
OMP_SCHEDULE schedule[,chunk] itera on scheduling scheme

Note
$ export VARIABLE_NAME=value

Programming model
Fabio Pitari, Cineca

17

Note
Intel compilers add some addi onal variables, which takes precedence over the OpenMP standard variables if
set both. They enable specific run- me libraries included in the Intel compilers. For instance:

KMP_DYNAMIC load_balance|thread_limit replace OMP_DYNAMIC

KMP_AFFINITY compact|scatter|balanced|verbose replace OMP_PROC_BIND

KMP_STACKSIZE size [B|K|M|G] replace OMP_STACKSIZE

and many others you can find in the Intel documenta on. In par cular you might want to refine affinity
star ng from KMP_AFFINITY variable (see this link).

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compilation/supported-environment-variables.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support/thread-affinity-interface-linux-and-windows.html

Affinity is relevant
Fabio Pitari, Cineca

18

The way in which cores are mapped by threads can be relevant with respect to performances

Switching different values of the variables allows to easily test different bindings
Note
Affinity might be relevant also for ini aliza ons (first touch issue)

Memory addresses refers to the whole physical memory,
disregarding the socket on which the corresponding physical
memory is a ached

⇒ This means that a serial ini aliza on tries to allocate everything on
the physical memory of the socket of the master thread

Mapping is effec vely executed when data are wri en to such
addresses

⇒ This means that in a following parallel region the threads on the
other socket will need to access to a memory not a ached to that
socket (bo leneck)

// serial initialization
for (i=0; i<N; i++)

x[i] = 0;

// parallel access
#pragma omp parallel
for (i=0; i<N; i++)

// something with x[i]

Programming model
Fabio Pitari, Cineca

19

Compiler direc ves
Environment variables
Run- me library
omp_get_thread_num() get thread ID
omp_get_num_threads() get number of threads in the team for threads
omp_set_num_threads(int n) set the number of threads
omp_get_wtime() returns elapsed wallclock me

Programming model
Fabio Pitari, Cineca

20

Note

#include <omp.h> // C++

USE omp_lib ! Fortran

Condi onal compila on
Fabio Pitari, Cineca

21

C/C++

i f d e f _OPENMP
p r i n t f ("OpenMP suppor t :%d" ,_OPENMP) ;

e l s e
p r i n t f (" S e r i a l e x e cu t i on . ") ;

e n d i f

Fortran
i f d e f _OPENMP

p r i n t * , "OpenMP suppor t : " , _OPENMP
#e l s e

p r i n t * , " S e r i a l e x e cu t i on . "
end i f

Note The macro _OPENMP has the value yyyymm, which contains the release date of the OpenMP
version currently being used

Process and thread
Fabio Pitari, Cineca

22

A process is an instance of a computer
program
Some informa on included in a process
are:

Text
⇒ Machine code

Data
⇒ Global variables

Stack
⇒ Local variables

Program counter (PC)
⇒ A pointer to the instruc on to be

executed

Mul -threaded processes
Fabio Pitari, Cineca

23

The process contains several concurrent
execu on flows (threads)

Each thread has its own program
counter (PC)
Each thread has its own private stack
(variables local to the thread)
The instruc ons executed by a thread
can access:

the process global memory (data)
the thread local stack

OpenMP memory model
Fabio Pitari, Cineca

24

Shared-Local model

each thread is allowed to have a temporary view of the shared memory

each thread has access to a thread-private memory

two kinds of data-sharing a ributes: private and shared

Distributed and shared memory
Fabio Pitari, Cineca

25

UMA and NUMA systems
Fabio Pitari, Cineca

26

Defined or undefined?
Fabio Pitari, Cineca

27

What's the result?

#include <stdio.h>
#include <omp.h>

void main(){
int a;
a = 0;
#pragma omp parallel
{

// omp_get_thread_num
// returns the id of the thread
a = a + omp_get_thread_num();

}
printf("%d\n", a);

}

Defined or undefined?
Fabio Pitari, Cineca

28

What's the result?

program race_condition
use omp_lib

integer :: a
a = 0

!$omp parallel
a = a + omp_get_thread_num()
!$omp end parallel

write(*,*) a
end program race_condition

Race condi on
Fabio Pitari, Cineca

29

A race condi on (or data race) is when two or more threads access the same
memory loca on:

asyncronously and,
without holding any common exclusive locks and,
at least one of the accesses is a write/store

In this case the resul ng values are undefined

Cri cal construct
Fabio Pitari, Cineca

30

The cri cal construct is a possible
solu on to data races:

The block of code inside a
cri cal construct is executed
by only one thread at a me

It locks the associated region

#include <stdio.h>
#include <omp.h>

void main(){
int a;
a = 0;
#pragma omp parallel
{

// omp_get_thread_num
// returns the id of the thread
#pragma omp critical
a = a + omp_get_thread_num();

}
printf("%d\n", a);

}

Cri cal construct
Fabio Pitari, Cineca

31

The cri cal construct is a possible
solu on to data races:

The block of code inside a
cri cal construct is executed
by only one thread at a me

It locks the associated region

program race_condition
use omp_lib

integer :: a
a = 0

!$omp parallel
!$omp critical
a = a + omp_get_thread_num()
!$omp end critical
!$omp end parallel

write(*,*) a
end program race_condition

Hands on
Fabio Pitari, Cineca

32

Exercise 1

#include <stdio.h>
#ifdef _OPENMP
#include<omp.h>
#endif

int main(int argc, char* argv[])
{
#ifdef _OPENMP
int iam;
#pragma omp parallel

{ /* the parallel block starts here */
iam=omp_get_thread_num();

#pragma omp critical
printf("Hello from %d\n",iam);

} /* the parallel block ends here */

#else
printf("Hello, this is a serial program.\n");

#endif

return 0;
}

Compile

Run

Experiment with the
OMP_NUM_THREADS
variable.

Did you obtain the behaviour
you expected?

Hands on
Fabio Pitari, Cineca

33

Exercise 1

Program Hello_from_Threads
#ifdef _OPENMP

use omp_lib
#endif

implicit none

integer :: iam

#ifdef _OPENMP
!$omp parallel

iam=omp_get_thread_num()

!$omp critical
write(*,*) 'Hello from', iam

!$omp end critical

!$omp end parallel
#else

write(*,*) 'Hello, this is a serial program'
#endif
end program Hello_from_Threads

Compile

Run

Experiment with the
OMP_NUM_THREADS
variable.

Did you obtain the behaviour
you expected?

Shared and private variables
Fabio Pitari, Cineca

34

Inside a parallel region the scope of a variable can be shared or private.

Shared

There is only one instance of the variable.
Direc ve: shared(a,b,c,…)

The variable is accessible by all threads in the team
Threads can read and write the variable simultaneously

Shared and private variables
Fabio Pitari, Cineca

35

Inside a parallel region the scope of a variable can be shared or private.

Private
Each thread has a copy of the variable. The variable is accessible only by the owner thread.

Direc ve: private(a,b,c,…)

Values are undefined on entry and exit

Direc ve: firstprivate(a,b,c,…)

variables are ini alized with the value that the original object had before entering the
parallel construct

Direc ve: lastprivate(a,b,c,…)

the thread that executes the sequen ally last itera on or sec on updates the value of
the variable

Data-sharing a ributes
Fabio Pitari, Cineca

36

The default behaviours might be confusing:

Shared by default:

variables allocated outside
the parallel region

assumed size arrays

variables with save a ributes
(Fortran)

Private by default:

variables allocated inside the parallel region

variables with automa c storage dura on

inner loop indexes in loop direc ve when using
Fortran

Data-sharing a ributes
Fabio Pitari, Cineca

37

Best prac ce: Nullify the default with the clause default(none)
int a=0;
float b=1.5;
int c=3;
#pragma omp parallel default(none) shared(a) private(b) firstprivate(c)
{

// each thread can access to "a"
// each thread has its own copy of "b", with an undefined value
// each thread has its own copy of "c", with c=3

}

Hands on
Fabio Pitari, Cineca

38

Solu on of exercise 1

#include <stdio.h>
#ifdef _OPENMP
#include<omp.h>
#endif

int main(int argc, char* argv[])
{
#ifdef _OPENMP
int iam;
#pragma omp parallel private(iam)

{ /* the parallel block starts here */
iam=omp_get_thread_num();

#pragma omp critical
printf("Hello from %d\n",iam);

} /* the parallel block ends here */

#else
printf("Hello, this is a serial program.\n");

#endif

return 0;
}

Hands on
Fabio Pitari, Cineca

39

Solu on of exercise 1

Program Hello_from_Threads
#ifdef _OPENMP

use omp_lib
#endif

implicit none

integer :: iam

#ifdef _OPENMP
!$omp parallel private(iam)

iam=omp_get_thread_num()

!$omp critical
write(*,*) 'Hello from', iam

!$omp end critical

!$omp end parallel
#else

write(*,*) 'Hello, this is a serial program'
#endif
end program Hello_from_Threads

Essen al OpenMP paralleliza on
Fabio Pitari, Cineca

40

The parallel direc ve has an implicit barrier at its end, i.e. all the threads have to wait that every other
thread complete its code block;

cri cal doesn't have an implicit barrier at the end; it just executes the threads one by one;

In order to build an OpenMP paralleliza on it is enough to use:

parallel direc ve;
cri cal direc ve;
omp_get_thread_num() func on;
omp_get_num_threads() func on;

However, this might imply to readapt the code (just like in MPI), while the aim of the OpenMP approach is to
keep the paralleliza on as simple as possible by sharing the work among the threads in an automa c way.
In order to automa ze such distribu on you can use worksharing direc ves.

Worksharing constructs

Worksharing constructs: rules
Fabio Pitari, Cineca

42

Distribute the execu on of the associated region

Rules

1. A worksharing region has no barrier on entry

2. An implied barrier exists at the end, unless nowait is specified

3. Each regionmust be encountered by all threads or none
⇒ Every thread must encounter the same sequence of worksharing regions and barrier

regions

Worksharing constructs: rules
Fabio Pitari, Cineca

43

Constructs

for/do loop
sec ons
single
workshare

Loop construct: syntax
Fabio Pitari, Cineca

44

C/C++

#pragma omp for [clause[[,] clause] ...]
for-loops

Fortran

!$omp do [clause[[,] clause] ...]
do-loops

!$omp end do [nowait]

Loop construct: syntax
Fabio Pitari, Cineca

45

Useful Clauses

schedule can be used to specify how itera ons are divided into chunks

collapse can be used to specify how many loops are parallelized

Loop construct
Fabio Pitari, Cineca

46

Rules

1. The itera ons of the loop are distributed over the threads that already exist in the team (scheduling clause can
manage their distribu on)

2. The itera on variable in the for loop

if shared, is implicitlymade private
must not be modified during the execu on of the loop
has an unspecified value a er the loop

3. Only loops with canonical forms are allowed, i.e.:
the itera on countmust be known before execu ng the loops
the incremental expressionmust be addi on or subtrac on expression.

4. By default (i.e. without the collapse clause) only the external loop is parallelized, whereas the internal ones are

executed sequen ally for each thread. The indexes of the internal loops, if allocated outside the parallel region:

in C/C++ are shared by default (as usual)
in Fortran are made private by default

Loop construct: scheduling clause
Fabio Pitari, Cineca

47

C/C++

#pragma omp for schedule(kind[, chunk_size])
for-loops

Fortran

!$omp do schedule(kind[, chunk_size])
do-loops

[!$omp end do [nowait]]

Loop construct: schedule kind
Fabio Pitari, Cineca

48

1. sta c

if no chunk_size is specified the itera ons space is divided in
chunks of equal size and one chunk per thread
if chunk_size is specified, chunks are assigned to the threads
in a round-robin fashion

2. dynamic

itera ons are divided into chunks of size chunk_size with
default value 1
the chunks are assigned to the threads as they request them

3. guided

itera ons are divided into chunks of decreasing size, where
chunk_size controls the minimum size
the chunks are assigned to the threads as they request them

Loop construct: schedule kind
Fabio Pitari, Cineca

49

1. sta c

if no chunk_size is specified the itera ons space is divided in
chunks of equal size and one chunk per thread
if chunk_size is specified, chunks are assigned to the threads
in a round-robin fashion

2. dynamic

itera ons are divided into chunks of size chunk_size with
default value 1
the chunks are assigned to the threads as they request them

3. guided

itera ons are divided into chunks of decreasing size, where
chunk_size controls the minimum size
the chunks are assigned to the threads as they request them

Loop construct: schedule kind
Fabio Pitari, Cineca

50

1. sta c

if no chunk_size is specified the itera ons space is divided in
chunks of equal size and one chunk per thread
if chunk_size is specified, chunks are assigned to the threads
in a round-robin fashion

2. dynamic

itera ons are divided into chunks of size chunk_size with
default value 1
the chunks are assigned to the threads as they request them

3. guided

itera ons are divided into chunks of decreasing size, where
chunk_size controls the minimum size
the chunks are assigned to the threads as they request them

Loop construct: collapse clause
Fabio Pitari, Cineca

51

Example

#pragma omp parallel
{
#pragma omp for collapse(2)

for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {

A[i][j] = i*m + j;
}

}
}

The collapse clause indicates how many loops should be collapsed (including the outer loop)

Allows paralleliza on of perfectly nested rectangular loops
Compiler forms a single loop (e.g. of length nxm) and then parallelizes it

Useful if n < number of threads, so parallelizing the outer loop makes balancing the load difficult.

Loop construct: ps and tricks
Fabio Pitari, Cineca

52

#pragma omp parallel
{

#pragma omp for
for (i=0; i<n; i++){

// do something
}

}

is equivalent to:

#pragma omp parallel for
for (i=0; i<n; i++){

// do something
}

Sec ons construct
Fabio Pitari, Cineca

53

C/C++

#pragma omp sections [clause[[,] clause]...]
{

#pragma omp section
structured-block

#pragma omp section
structured-block

...
}

1. sections is a non-itera ve worksharing
construct

it contains a set of
structured-blocks
each section is executed once by
only one of the threads

2. Scheduling of the sec ons is
implementa on defined

3. There is an implied barrier at the end of the
construct

Sec ons construct
Fabio Pitari, Cineca

54

Fortran

!$omp sections [clause[[,] clause]...]
!$omp section

structured-block
!$omp section

structured-block
...

!$omp end sections [nowait]

1. sections is a non-itera ve worksharing
construct

it contains a set of
structured-blocks
each section is executed once by
only one of the threads

2. Scheduling of the sec ons is
implementa on defined

3. There is an implied barrier at the end of the
construct

Single construct
Fabio Pitari, Cineca

55

C/C++

#pragma omp single [clause[[,] clause]...]
structured-block

Fortran

!$omp single [clause[[,] clause] ...]
structured-block

!$omp end single [nowait]

1. The associated structured block is
executed by only one thread

2. The other threads wait at an implicit
barrier (unless a nowait clause is
specified)

3. The method of choosing a thread is
implementa on defined

Single vs Master construct
Fabio Pitari, Cineca

56

Note: The master construct is similar but specifies a structured block:

that is executed by the master thread
with no implied barrier on entry or exit (it isn't a worksharing construct)

C/C++

#pragma omp master
structured-block

Fortran

!$omp master
structured-block

!$omp end master

The advantage w.r.t. a single construct with nowait clause is that:

not being a worksharing construct can be nested inside one of them;

allows some opera ons in some specific context where only the master is allowed to perform some
opera ons (e.g. MPI communica ons when MPI_THREAD_FUNNELED is set)

Workshare construct
Fabio Pitari, Cineca

57

Note: only available in Fortran

Fortran

!$omp workshare
structured-block

!$omp end workshare [nowait]

Divides the lines of the code block into units of work, and each of them is then executed by a different thread. The allowed
instruc ons are (mainly):

1. scalar assignments

2. array assignments (one element for thread)

3. FORALL statements

4. WHERE statements

When the code lines are not included in the cases above, they're treated as a single unit of work (and thus executed
sequen ally by one thread).

Exercise 2
Fabio Pitari, Cineca

58

The code performs a serial matrix mul plica on

Try to parallelize it with OpenMP, ac ng only on the most important loop

Try also to add the ming func ons before and a er the loop and print the elapsed
me.

Exercise 2
Fabio Pitari, Cineca

59

C/C++

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(int argc, char **argv)
{

int n;
int i, j, k;

if(argc != 2) {
fprintf(stderr,"Usage: %s matrix size\n", argv[0]);
exit(EXIT_FAILURE);

}

Exercise 2
Fabio Pitari, Cineca

60

C/C++

n = atoi(argv[1]);
if (n > 0) {

printf("Matrix size is %d\n",n);
}
else {

fprintf(stderr,"Error, matrix size is %d \n", n);
exit(EXIT_FAILURE);

}

double (*a)[n] = malloc(sizeof(double[n][n]));
double (*b)[n] = malloc(sizeof(double[n][n]));
double (*c)[n] = malloc(sizeof(double[n][n]));

if (a == NULL || b == NULL || c == NULL) {
fprintf(stderr, "Not enough memory!\n");
exit(EXIT_FAILURE);

Exercise 2
Fabio Pitari, Cineca

61

C/C++

for (i=0; i<n; i++)
for (j=0; j<n; j++) {

a[i][j] = ((double)rand())/((double)RAND_MAX);
b[i][j] = ((double)rand())/((double)RAND_MAX);
c[i][j] = 0.0;

}

for (i=0; i<n; i++)
for (k=0; k<n; k++)

for (j=0; j<n; j++)
c[i][j] += a[i][k]*b[k][j];

Exercise 2
Fabio Pitari, Cineca

62

C/C++

//check a random element
i = rand()%n;
j = rand()%n;
double d = 0.0;
for (k=0; k<n; k++)

d += a[i][k]*b[k][j];

printf("Check on a random element: %18.9lE\n", fabs(d-c[i][j]));

return 0;

}

Exercise 2
Fabio Pitari, Cineca

63

Fortran

Program matrix_matrix_prod
implicit none
integer :: n
real(kind(1.d0)), dimension(:,:), allocatable :: a, b, c
real(kind(1.d0)) :: d
integer :: i, j, k, ierr
character(len=128) :: command
character(len=80) :: arg

Exercise 2
Fabio Pitari, Cineca

64

Fortran

call get_command_argument(0,command)
if (command_argument_count() /= 1) then

write(0,*) 'Usage:', trim(command), ' matrix size'
stop

else
call get_command_argument(1,arg)
read(arg,*) n

endif
if (n > 0) then

write(*,*) 'Matrix size is ', n
else

write(0,*) "Error, matrix size is ", n
endif

Exercise 2
Fabio Pitari, Cineca

65

Fortran

allocate(a(n,n),b(n,n),c(n,n),stat=ierr)

if(ierr/=0) STOP 'a,b,c matrix allocation failed'

call random_number(a)
call random_number(b)
c = 0.d0

Exercise 2
Fabio Pitari, Cineca

66

Fortran

do j=1, n
do k=1, n

do i=1, n
c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do
end do

end do

Exercise 2
Fabio Pitari, Cineca

67

Fortran

call random_number(d)
i = int(d*n+1)
call random_number(d)
j = int(d*n+1)
d = 0.d0
do k=1, n

d = d + a(i,k)*b(k,j)
end do

write(*,*) "Check on a random element:" , abs(d-c(i,j))

end program matrix_matrix_prod

How to avoid data races

Cri cal construct
Fabio Pitari, Cineca

69

C/C++

#pragma omp critical [clause [clause] ...]

Fortran

!$omp critical [clause [clause]...]

As previously shown, the block of code inside a cri cal construct is executed by only one thread at me

This is clearly unefficient since it serializes the execu on of the process

It has to be considered an extreme solu on, but less invasive possibili es has to be considered in the
first instance, like the following ones

Reduc on clause: some facts
Fabio Pitari, Cineca

70

A reduc on variable is used to accumulate a value from the different threads

double x[n];
double sum=0;
#pragma omp parallel for reduction (+:sum)
for (i=0; i<n; i++){

sum+=x[i]
}

Reduc on clause: some facts
Fabio Pitari, Cineca

71

The reduc on clause:

is valid both on parallel and work-sharing constructs

specifies an operator and one or more list items
C/C++ +, *, -, &, |, &&, ||, max, min

Fortran +, *, -, .and., .or., .eqv., .neqv., max, min, iand,
ior, ieor

The items that appears in a reduction clause must be shared
a local copy is created and ini alized based on the reduc on opera on
updates occur on the local copy.
local copies are reduced into a single value and combined with the original global value.

Reduc on clause: some facts
Fabio Pitari, Cineca

72

The reduc on clause:

is valid both on parallel and work-sharing constructs

specifies an operator and one or more list items
C/C++ +, *, -, &, |, &&, ||, max, min

Fortran +, *, -, .and., .or., .eqv., .neqv., max, min, iand,
ior, ieor

The items that appears in a reduction clause must be shared
a local copy is created and ini alized based on the reduc on opera on
updates occur on the local copy.
local copies are reduced into a single value and combined with the original global value.

Reduc on clause: some facts
Fabio Pitari, Cineca

73

The reduc on clause:

is valid both on parallel and work-sharing constructs

specifies an operator and one or more list items
C/C++ +, *, -, &, |, &&, ||, max, min

Fortran +, *, -, .and., .or., .eqv., .neqv., max, min, iand,
ior, ieor

The items that appears in a reduction clause must be shared
a local copy is created and ini alized based on the reduc on opera on
updates occur on the local copy.
local copies are reduced into a single value and combined with the original global value.

Reduc on clause: some facts
Fabio Pitari, Cineca

74

The reduc on clause:

is valid both on parallel and work-sharing constructs

specifies an operator and one or more list items
C/C++ +, *, -, &, |, &&, ||, max, min

Fortran +, *, -, .and., .or., .eqv., .neqv., max, min, iand,
ior, ieor

The items that appears in a reduction clause must be shared
a local copy is created and ini alized based on the reduc on opera on
updates occur on the local copy.
local copies are reduced into a single value and combined with the original global value.

Exercise 3
Fabio Pitari, Cineca

75

The code determines the value of π, by calcula ng an integral between 0 and 1. The
integral is approximated as a sum of n intervals.

Parallelize it with OpenMP

Try also to solve the exercise without using the reduc on clause

Exercise 3
Fabio Pitari, Cineca

76

C/C++

#include <stdio.h>
#include <time.h>

#define PI25DT 3.141592653589793238462643
#define INTERVALS 100000000

int main(int argc, char **argv)
{

long int i, intervals = INTERVALS;
double x, dx, f, sum, pi;
double time2;
time_t time1 = clock();
printf("Number of intervals: %ld\n", intervals);

sum = 0.0;
dx = 1.0 / (double) intervals;

Exercise 3
Fabio Pitari, Cineca

77

C/C++

for (i = 1; i <= intervals; i++) {
x = dx * ((double) (i - 0.5));
f = 4.0 / (1.0 + x*x);
sum = sum + f;

}

Exercise 3
Fabio Pitari, Cineca

78

C/C++

pi = dx*sum;

time2 = (clock() - time1) / (double) CLOCKS_PER_SEC;

printf("Computed PI %.24f\n", pi);
printf("The true PI %.24f\n\n", PI25DT);
printf("Elapsed time (s) = %.2lf\n", time2);

return 0;
}

Exercise 3
Fabio Pitari, Cineca

79

Fortran

program pi
implicit none

integer(selected_int_kind(18)) :: i
integer(selected_int_kind(18)), parameter :: intervals=1e8

real(kind(1.d0)) :: dx,sum,x
real(kind(1.d0)) :: f,pi

real(kind(1.d0)), parameter :: PI25DT = acos(-1.d0)
real :: time1, time2

call cpu_time(time1)

print *, 'Number of intervals: ', intervals
sum=0.d0
dx=1.d0/intervals

Exercise 3
Fabio Pitari, Cineca

80

Fortran

do i=1,intervals
x=dx*(i-0.5d0)
f=4.d0/(1.d0+x*x)
sum=sum+f

end do

Exercise 3
Fabio Pitari, Cineca

81

Fortran

pi=dx*sum

call cpu_time(time2)

PRINT '(a13,2x,f30.25)',' Computed PI =', pi
PRINT '(a13,2x,f30.25)',' The True PI =', PI25DT
PRINT *, ' '
PRINT *, 'Elapsed time ', time2-time1 ,' s'

end program

Barrier construct
Fabio Pitari, Cineca

82

The barrier construct specifies an explicit barrier at the point at which the construct appears

Reminder: implicit barriers are assumed at the end of a worksharing construct, and can be removed via
the nowait clause

Note: when not necessary, a barrier can cause slowdowns

C/C++

#pragma omp barrier

Fortran

!$omp barrier

Example: wai ng for the master

int counter = 0;
#pragma omp parallel
{
#pragma omp master

counter = 1;
#pragma omp barrier

printf("%d\n", counter);
}

Atomic construct
Fabio Pitari, Cineca

83

C/C++

#pragma omp atomic [read | write | update | capture]
expression -stmt

Fortran
!$omp atomic [read | write | update | capture]

expression -stmt
!$omp end atomic

Atomic construct
Fabio Pitari, Cineca

84

The atomic construct:

Ensures a specific storage loca on to be updated atomically, i.e. does not expose it
to mul ple, simultaneous wri ng threads
Possible clauses are:
read forces an atomic read regardless of the machine word size

write forces an atomic write regardless of the machine word size
update forces an atomic update (default)
capture same as an update, but captures original or final value (e.g. allows a = b++ with both a

and b atomically updated)

Accesses to the same loca on must have compa ble types

Atomic construct
Fabio Pitari, Cineca

85

The atomic construct:

Ensures a specific storage loca on to be updated atomically, i.e. does not expose it
to mul ple, simultaneous wri ng threads

Possible clauses are:
read forces an atomic read regardless of the machine word size

write forces an atomic write regardless of the machine word size
update forces an atomic update (default)
capture same as an update, but captures original or final value (e.g. allows a = b++ with both a

and b atomically updated)

Accesses to the same loca on must have compa ble types

Atomic construct
Fabio Pitari, Cineca

86

The atomic construct:

Ensures a specific storage loca on to be updated atomically, i.e. does not expose it
to mul ple, simultaneous wri ng threads
Possible clauses are:
read forces an atomic read regardless of the machine word size

write forces an atomic write regardless of the machine word size
update forces an atomic update (default)
capture same as an update, but captures original or final value (e.g. allows a = b++ with both a

and b atomically updated)

Accesses to the same loca on must have compa ble types

Atomic construct
Fabio Pitari, Cineca

87

The atomic construct:

Ensures a specific storage loca on to be updated atomically, i.e. does not expose it
to mul ple, simultaneous wri ng threads
Possible clauses are:
read forces an atomic read regardless of the machine word size

write forces an atomic write regardless of the machine word size
update forces an atomic update (default)
capture same as an update, but captures original or final value (e.g. allows a = b++ with both a

and b atomically updated)

Accesses to the same loca on must have compa ble types

Exercise 4
Fabio Pitari, Cineca

88

The code solves a 2-D Laplace equa on by using a relaxa on scheme.

Parallelize the code by using OpenMP direc ves. Work on the most computa onally
intensive loop

Try to include also the while loop in the parallel region

Exercise 5
Fabio Pitari, Cineca

89

Try to parallelize your hea low code with OpenMP worksharing direc ves; take a
look at src/cxx/grid.cpp
Work on the most computa onally intensive loops

SIMD

SIMD: basic concepts
Fabio Pitari, Cineca

91

SIMD : Single Instruc on stream, Mul ple Data stream

a vector register (or SIMD register) can hold many values of a single type;

each value in a SIMD register is called SIMD lane or simply lane

SIMD instruc ons are hardware instruc ons that modify the vector registers

SIMD instruc on can operate on several lanes (pically on all the lanes) of a SIMD
register at the same me

Hardware evolu on (e.g. Intel)
Fabio Pitari, Cineca

92

How vectoriza on works
Fabio Pitari, Cineca

93

Vectoriza on operates on en re blocks of data
(vectors)

At CPU level, a single instruc on operates upon
mul ple data elements concurrently

This increase the FLOP/s rate of the processor

SIMD instruc ons use special SIMD registers
containing mul ple data elements

Vectors help to make good use of the memory
hierarchy, and to write code which has good
access pa erns to maximise memory bandwidth

Autovectoriza on
Fabio Pitari, Cineca

94

Compiler can detect loops or blocks of codes that can be vectorized

Auto-vectoriza on relies on sta c analysis

Increased complexity of instruc ons makes it hard for the compiler to select proper instruc ons

Code pa ern needs to be recognized by the compiler

Precision requirements o en inhibit SIMD code gen

Note
A common compilers' feature is to print a brief report related to vectoriza on

GNU (gcc, g++, gfortran) -ftree-vectorize -ftree-vectorizer-verbose (automa cally enabled with
-O3)

Intel (icc, icpc, ifort) -qopt-report=2 -qopt-report-phase=vec

Autovectoriza on
Fabio Pitari, Cineca

95

Modern compilers are very good at
automa cally vectorizing the loops

Compilers need to be sure it's safe to vectorize

When vectoriza on is not considered safe,
autovectoriza on is skipped

Some reasons for failing vectoriza on

Data dependency

Alignement (see next slide)

Func on calls in the loop

Condi onal branches

Non-constant bounds of the
loops

Mixed data types

Non-unit stride between two
elements

Loop body too complex
(register pressure)

Vectoriza on seems
inefficient

…

Note
You can try to understand why autovectoriza on fails increasing verbosity of its output

GNU (gcc, g++, gfortran) -ftree-vectorizer-verbose=N -fopt-info-all=filename
Intel (icc, icpc, ifort) -qopt-report=5

Autovectoriza on
Fabio Pitari, Cineca

96

Some mes the compiler needs help in con rming
loops are vectorizeable

To get the full bene t from SIMD, the star ng
address of the vectors may need to be aligned
on the correct boundary

The address in memory must be a mul ple of
the vector length in bytes

OpenMP provides the simd direc ve, in order to manually tune the vectoriza on of the
loops by the compiler

OpenMP SIMD direc ve
Fabio Pitari, Cineca

97

simd direc ve in OpenMP cut loops into chunks in order to fit them in vector registers

no thread paralleliza on of the loop body

C/C++

#pragma omp simd [clause, ...]
// structured block

Fortran

!$omp simd [clause, ...]
! structured block

!$omp end simd

OpenMP SIMD direc ve: example
Fabio Pitari, Cineca

98

C/C++

#pragma omp simd
for (int i=0 ; i<n ; i++)

c[i] = a[i] + b[i];

Fortran

!$omp simd
do i = 1,n

c[i] = a[i] + b[i]
!$omp end simd

simd clauses: safelen
Fabio Pitari, Cineca

99

safelen allows to indicate the number of itera ons that will run concurrently without breaking a dependence;
i.e. the distance between to itera ons in which is to safe to vectorize

C/C++

#pragma omp simd safelen(4)
for (int i=1; i<SIZE-4 ; i++) {

A[i] = A[i] + A[i+4];
}

Fortran

!$omp simd safelen(4)
do i=1,N-4

A(i) = A(i) + A(i+4)
end do
!$omp end simd

it can be combined with any reduc on or data-sharing clauses already seen

hardcoding explicit vector lengths may bring to code obsolescence, as vector lengths con nuously
change

simd clauses: linear
Fabio Pitari, Cineca

100

The linear clause allows to workaround some loop dependencies among integer variables that otherwise
would break vectoriza on.

Note
linear provides a superset of private clause func onali es

Example

Arrays a and c are accessed through the loop variable i

Array b is indexed through another variable j

j has a linear rela onship with the loop itera on
variable i, which is incremented by 2 in each itera on,
while j is incremented by one

#pragma omp simd linear(j:1)
for (int i=offset; i<N; i+=2)

c[i] = a[j++] + b[i];

OpenMP SIMD worksharing construct
Fabio Pitari, Cineca

101

There is also an addi onal construct for simd which combines thread chunks with simd vectoriza on

1. loops are divided into chunks (just like in the loop worksharing construct)

2. each thread is then vectorized (just like in the simd construct)

C/C++

#pragma omp for simd
for (int i=0 ; i<n ; i++)

c[i] = a[i] + b[i];

Fortran
!$omp do simd
do i = 1,n

c[i] = a[i] + b[i]
!$omp end do simd

SIMD func on vectoriza on
Fabio Pitari, Cineca

102

The declare simd construct allows to point out to the compiler that some func on body
can be vectorized, so that the func on call inside a loop does not inhibit the loop
vectoriza on

the func on body must be a structured block

whatever alters the execu on of concurrent
itera ons on the SIMD unit (e.g. branching in
and out from the func on) breaks the
compa bility with the construct

declare simd only combines with simd direc ve
(outer from the func on call)

Example

#pragma omp declare simd
int min (int a, int b) {

return a < b ? a : b;
}

#pragma omp simd
for (i=0; i<N; i++)

c[i] = min(a[i], b[i]);

Op onal exercise
Fabio Pitari, Cineca

103

Try to repeat the previous exercises using simd paralleliza on

Compare the results of vectoriza on with the ones of worksharing approach

Tasks

The task construct
Fabio Pitari, Cineca

105

C/C++

#pragma omp task [clause]
// structured block

Fortran

!$omp task [clauses]
! structured block

!$omp end task

The task construct meline:

2008 Introduced in OpenMP 3.0

2013 Improved in OpenMP 4.0

2018 Further improvements in OpenMP 5.0 (notably reduc on on tasks)

Useful for dealing with:

large and complex applica ons
load unbalancing
irregular and dynamic structures

unbounded loops

recursive func ons

The task construct
Fabio Pitari, Cineca

106

What is a task?

Is a block of instruc ons and data that is scheduled to be executed by a thread,
concurrently with other tasks

1. A parallel region creates a team of
threads

2. A single thread then creates the tasks,
adding them to a queue that belongs to
the team

3. The task scheduler assigns the tasks in
the queue to the threads in the team

The task construct
Fabio Pitari, Cineca

107

What is a task?

Is a block of instruc ons and data that is scheduled to be executed by a thread,
concurrently with other tasks

1. A parallel region creates a team of
threads

2. A single thread then creates the tasks,
adding them to a queue that belongs to
the team

3. The task scheduler assigns the tasks in
the queue to the threads in the team

The task construct
Fabio Pitari, Cineca

108

What is a task?

Is a block of instruc ons and data that is scheduled to be executed by a thread,
concurrently with other tasks

1. A parallel region creates a team of
threads

2. A single thread then creates the tasks,
adding them to a queue that belongs to
the team

3. The task scheduler assigns the tasks in
the queue to the threads in the team

The task construct
Fabio Pitari, Cineca

109

What is a task?

Is a block of instruc ons and data that is scheduled to be executed by a thread,
concurrently with other tasks

1. A parallel region creates a team of
threads

2. A single thread then creates the tasks,
adding them to a queue that belongs to
the team

3. The task scheduler assigns the tasks in
the queue to the threads in the team

Tasks vs "classical" OpenMP direc ves
Fabio Pitari, Cineca

110

Tasks paralleliza on let the system to decide at run me when to run a task with respect to
avaliable resources, which add more flexibility and asynchronicity to the execu on

Note

When a parallel region is created, an implicit task is created behind the scenes with a set
of instruc ons, which in the early stage are distributed among the avaliable threads. In
contrast, using the task direc ve allows to queue an explicit task which will be assigned at
some point to an idle thread.

Why tasks?
Fabio Pitari, Cineca

111

Tasks are useful to do things that are hard or impossible with the loop and section constructs

Linked list example

#pragma omp parallel // create a team of threads
{
#pragma omp single // where a single thread
{

p = head_of_list(); // starts from the head of the list
while (!end_of_list(p)){ // and, until the end of the list,

#pragma omp task // submits a task
process(p); // that will process the element

p = next_element(p); // and goes to the next element
}

}
}

Why tasks?
Fabio Pitari, Cineca

112

Example: Sudoku solu on

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Worksharing approach

Brute force is a recursive problem

External loop on each blank box

Internal loop from 1 to 9 for each blank box (open a parallel region)

You need to check if each number is valid, so you need to fill the next
blank box (open a nested parallel region) and check every combina on

…and so on for every blank box (which in turn open a further nested
parallel region)

This (inefficient) procedure quickly overcrowd the available resources

Why tasks?
Fabio Pitari, Cineca

113

Example: Sudoku solu on

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Tasking approach
Each candidate combina on of numbers is independent and thus can be evaluated in parallel

External loop on each blank box

A single thread is selected in the parallel region in order to start the algorithm

#pragma omp parallel
#pragma omp single

Internal loop from 1 to 9 for each blank box schedule a new task

#pragma omp task

At the end of the recursion a copy of the board with a different combina on of numbers is assigned to a
different task

master thread assign tasks as soon a thread is idle

wait for comple on; tasks synchroniza on can be achieved via the taskwait direc ve

#pragma omp taskwait

Why tasks?
Fabio Pitari, Cineca

114

Example: Sudoku solu on

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Tasking approach
Each candidate combina on of numbers is independent and thus can be evaluated in parallel

External loop on each blank box

A single thread is selected in the parallel region in order to start the algorithm

#pragma omp parallel
#pragma omp single

Internal loop from 1 to 9 for each blank box schedule a new task

#pragma omp task

At the end of the recursion a copy of the board with a different combina on of numbers is assigned to a
different task

master thread assign tasks as soon a thread is idle

wait for comple on; tasks synchroniza on can be achieved via the taskwait direc ve

#pragma omp taskwait

Why tasks?
Fabio Pitari, Cineca

115

Example: Sudoku solu on

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Tasking approach
Each candidate combina on of numbers is independent and thus can be evaluated in parallel

External loop on each blank box

A single thread is selected in the parallel region in order to start the algorithm

#pragma omp parallel
#pragma omp single

Internal loop from 1 to 9 for each blank box schedule a new task

#pragma omp task

At the end of the recursion a copy of the board with a different combina on of numbers is assigned to a
different task

master thread assign tasks as soon a thread is idle

wait for comple on; tasks synchroniza on can be achieved via the taskwait direc ve

#pragma omp taskwait

Why tasks?
Fabio Pitari, Cineca

116

Example: Sudoku solu on

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Tasking approach
Each candidate combina on of numbers is independent and thus can be evaluated in parallel

External loop on each blank box

A single thread is selected in the parallel region in order to start the algorithm

#pragma omp parallel
#pragma omp single

Internal loop from 1 to 9 for each blank box schedule a new task

#pragma omp task

At the end of the recursion a copy of the board with a different combina on of numbers is assigned to a
different task

master thread assign tasks as soon a thread is idle

wait for comple on; tasks synchroniza on can be achieved via the taskwait direc ve

#pragma omp taskwait

Why tasks?
Fabio Pitari, Cineca

117

Example: Sudoku solu on

(The example is taken from
OpenMP tutorial by C. Terboven
and M. Klemm)

Tasking approach
Each candidate combina on of numbers is independent and thus can be evaluated in parallel

External loop on each blank box

A single thread is selected in the parallel region in order to start the algorithm

#pragma omp parallel
#pragma omp single

Internal loop from 1 to 9 for each blank box schedule a new task

#pragma omp task

At the end of the recursion a copy of the board with a different combina on of numbers is assigned to a
different task

master thread assign tasks as soon a thread is idle

wait for comple on; tasks synchroniza on can be achieved via the taskwait direc ve

#pragma omp taskwait

Tasks are not always the solu on
Fabio Pitari, Cineca

118

Fibonacci example

int fib(int n) {
if (n < 2) return n;
int x, y;
#pragma omp task shared(x)
{

x = fib(n - 1);
}
#pragma omp task shared(y)
{

y = fib(n - 2);
}
#pragma omp taskwait
return x+y;

}
In this case the approach is recursive again, but the recursion levels are not independent one to each other.

Tasks data scoping
Fabio Pitari, Cineca

119

int a=1;
void foo(){

int b=2, c=3;
#pragma omp parallel shared(b) private(c)
{

int d=4;
#pragma omp task
{
int e=5;
// a is shared
// b is shared
// c is firstprivate
// d is firstprivate
// e is private
}

}
}

Rules (if default is not specified):

1. A variable that is determined to be
shared in all enclosing constructs is
shared

2. It is firstprivate otherwise (this
avoid undefined values if switching
on a different thread)

Reduc on with tasks
Fabio Pitari, Cineca

120

Star ng from OpenMP 5.0, it is possible to use reduc on among tasks, as long as the
keyword task is specified together with the reduc on clause

C/C++

double x[n];
double sum=0;
#pragma omp parallel for reduction (task, +:sum)
for (i=0; i<n; i++){

#pragma omp task in_reduction(+:sum)
sum+=x[i]

}

Tasks synchroniza on: un ed clause
Fabio Pitari, Cineca

121

Under some condi on some tasks can be suspended, for instance an outer task
in which is invoked an inner one, or explicitly with the taskyeld direc ve

C/C++

#pragma omp taskyeld

Fortran

!$omp taskyeld

By default,a suspended task is bonded to the thread on which it was ini alited,
which means that such thread will stay idle un l the task is restarted (deadlock
risk)

The un ed clause removes this default behaviour and let the thread free while
suspended; it will restart on any idle thread (this might bring to some
inconsistencies with thread-related clauses not treated here)

Example

#pragma omp parallel
#pragma omp single
{

#pragma omp task untied
{

foo();
#pragma omp taskyeld
bar();

}
}

Tasks synchroniza on: taskwait
Fabio Pitari, Cineca

122

taskwait is the equivalent of barrier
for tasks

it only waits for tasks with the same
parent thread, but not for their nested
tasks; use taskgroups to handle more
complex schemes

Note

barrier direc ve waits for all the tasks in all
the threads

Example

#pragma omp parallel
#pragma omp single
{

#pragma omp task
{

#pragma omp task
// waited
#pragma omp task
// waited
{

#pragma omp task
// not waited

}
#pragma omp taskwait

}
}

Tasks synchroniza on: taskgroups
Fabio Pitari, Cineca

123

taskgroup group a set of tasks and add an
implicit barrier at the end

taskgroup also allows reduc on among tasks
(star ng from OpenMP 5.0)

notably, this allows reduc on among while loops

C/C++

#pragma omp taskgroup task_reduction(+:sum)
{
// some code, e.g. while loop

#pragma omp task in_reduction(+:sum)
sum += //...

}

Example

#pragma omp parallel
#pragma omp single
{

#pragma omp taskgroup
{

#pragma omp task
// waited
#pragma omp task
// waited
{

#pragma omp task
// waited

}
} // implicit taskwait

}

Tasks synchroniza on: depend
Fabio Pitari, Cineca

124

void foo(){
int a, b=2, c=3;
#pragma omp parallel
{
#pragma omp single
{

#pragma omp task
b=b+7;
#pragma omp task
c=c+4;
//-- some kind of barrier
#pragma omp task
a=b+c;

}
}

}

1. taskwait: waits for tasks
spawned by current task and itself

#pragma omp taskwait

2. depend: explicit declara on of
tasks dependencies. Some more
words to say ...

Tasks synchroniza on: depend
Fabio Pitari, Cineca

125

void foo(){
int a, b=2, c=3;
#pragma omp parallel
{
#pragma omp single
{

#pragma omp task depend(out:b)
b=b+7;
#pragma omp task depend(out:c)
c=c+4;

#pragma omp task depend(in:b,c)
a=b+c;

}
}

}

in it will be a dependent task of all previously
generated sibling tasks that reference at
least one of the list items in an out or
inout clause

out it will be a dependent task of all previously
generated sibling tasks that reference at
least one of the list items in an in or
inout clause

inout it will be a dependent task of all previously
generated sibling tasks that reference at
least one of the list items in an in, out or
inout clause

The depend clause: an example
Fabio Pitari, Cineca

126

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

void process(int v[6], int& tot){

v[0]=sum(v[0],v[1]);

v[4]=sum(v[4],1);

v[2]=sum(v[3],v[0]);

v[5]=sum(v[2],v[4]);

v[1]=sum(v[0],v[4]);

v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}

The depend clause: an example
Fabio Pitari, Cineca

127

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

Execution time:
12s

Output:
tot = 345

void process(int v[6], int& tot){

v[0]=sum(v[0],v[1]);

v[4]=sum(v[4],1);

v[2]=sum(v[3],v[0]);

v[5]=sum(v[2],v[4]);

v[1]=sum(v[0],v[4]);

v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}

The depend clause: an example
Fabio Pitari, Cineca

128

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

v[0]=sum(v[0],v[1]);

v[4]=sum(v[4],1);

v[2]=sum(v[3],v[0]);

v[5]=sum(v[2],v[4]);

v[1]=sum(v[0],v[4]);

v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}
}
}

The depend clause: an example
Fabio Pitari, Cineca

129

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

Execution time:
12s

Output:
tot = 345

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

v[0]=sum(v[0],v[1]);

v[4]=sum(v[4],1);

v[2]=sum(v[3],v[0]);

v[5]=sum(v[2],v[4]);

v[1]=sum(v[0],v[4]);

v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}
}
}

The depend clause: an example
Fabio Pitari, Cineca

130

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

#pragma omp task depend(inout:v[0]) depend(in:v[1])
v[0]=sum(v[0],v[1]);

v[4]=sum(v[4],1);

v[2]=sum(v[3],v[0]);

v[5]=sum(v[2],v[4]);

v[1]=sum(v[0],v[4]);

v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}
}
}

The depend clause: an example
Fabio Pitari, Cineca

131

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

#pragma omp task depend(inout:v[0]) depend(in:v[1])
v[0]=sum(v[0],v[1]);
#pragma omp task depend(inout:v[4])
v[4]=sum(v[4],1);
#pragma omp task depend(in:v[0],v[3]) depend(out:v[2])
v[2]=sum(v[3],v[0]);
#pragma omp task depend(in:v[2],v[4]) depend(out:v[5])
v[5]=sum(v[2],v[4]);
#pragma omp task depend(in:v[0],v[4]) depend(out:v[1])
v[1]=sum(v[0],v[4]);
#pragma omp task depend(inout:v[3])
v[3]=sum(v[3],-3);
#pragma omp taskwait
for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}
}
}

The depend clause: an example
Fabio Pitari, Cineca

132

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

Execution time:
9s

Output:
tot = 345

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

#pragma omp task depend(inout:v[0]) depend(in:v[1])
v[0]=sum(v[0],v[1]);
#pragma omp task depend(inout:v[4])
v[4]=sum(v[4],1);
#pragma omp task depend(in:v[0],v[3]) depend(out:v[2])
v[2]=sum(v[3],v[0]);
#pragma omp task depend(in:v[2],v[4]) depend(out:v[5])
v[5]=sum(v[2],v[4]);
#pragma omp task depend(in:v[0],v[4]) depend(out:v[1])
v[1]=sum(v[0],v[4]);
#pragma omp task depend(inout:v[3])
v[3]=sum(v[3],-3);
#pragma omp taskwait
for(int i=0; i<6; i++)

{

tot+=square(v[i]);
}

}
}
}

The depend clause: an example
Fabio Pitari, Cineca

133

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

#pragma omp task depend(inout:v[0]) depend(in:v[1])
v[0]=sum(v[0],v[1]);
#pragma omp task depend(inout:v[4])
v[4]=sum(v[4],1);
#pragma omp task depend(in:v[0],v[3]) depend(out:v[2])
v[2]=sum(v[3],v[0]);
#pragma omp task depend(in:v[2],v[4]) depend(out:v[5])
v[5]=sum(v[2],v[4]);
#pragma omp task depend(in:v[0],v[4]) depend(out:v[1])
v[1]=sum(v[0],v[4]);
#pragma omp task depend(inout:v[3])
v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)
#pragma omp task depend(in:v[i])
{

#pragma omp atomic update
tot+=square(v[i]);

}
}
}
}

The depend clause: an example
Fabio Pitari, Cineca

134

int sum(int x, int y){
sleep(1);
return x+y;

}
int square(int x){

sleep(1);
return x*x;

}

int main(){
int v[6]={1,2,3,4,5,6};
int tot=0;
process(v, tot);
printf("tot = %d \n", tot);
return 0;

}

Execution time:
4s

Output:
tot = 345

void process(int v[6], int& tot){
#pragma omp parallel shared(v, tot)
{
#pragma omp single
{

#pragma omp task depend(inout:v[0]) depend(in:v[1])
v[0]=sum(v[0],v[1]);
#pragma omp task depend(inout:v[4])
v[4]=sum(v[4],1);
#pragma omp task depend(in:v[0],v[3]) depend(out:v[2])
v[2]=sum(v[3],v[0]);
#pragma omp task depend(in:v[2],v[4]) depend(out:v[5])
v[5]=sum(v[2],v[4]);
#pragma omp task depend(in:v[0],v[4]) depend(out:v[1])
v[1]=sum(v[0],v[4]);
#pragma omp task depend(inout:v[3])
v[3]=sum(v[3],-3);

for(int i=0; i<6; i++)
#pragma omp task depend(in:v[i])
{

#pragma omp atomic update
tot+=square(v[i]);

}
}
}
}

Taskloop direc ve
Fabio Pitari, Cineca

135

Loops can be parallelized with tasks not only with an explicit task in the middle, but
also with an external taskloop direc ve

Loop chunks are scheduled on tasks

Implcitely create a taskgroup

C/C++

#pragma omp taskloop
// for loop

Fortran

!$omp taskloop
! do loop
!$omp end taskloop

! Don't forget to enclose it in a single (or master) direc ve!

Taskloop direc ve: clauses
Fabio Pitari, Cineca

136

grainsize(N) : each task contains at least N itera ons (but no more than 2N)

num_tasks(M) : create M tasks (with at least one itera on)

(If none of the above clauses is specified, the number of itera on per task is implementa on defined)

nogroup : remove the implicit barrier at the end

collapse(P) : P nested loop levels are parallelized (and not just the outer loop)

reduc on

Reduc on among the tasks on the specified
variable and opera on

#pragma omp taskloop reduction(+:sum)

in_reduc on

Reduc on from an outer taskgroup

#pragma omp taskgroup task_reduction(+:sum)
{

#pragma omp taskloop in_reduction(+:sum)
for (i=0, i<N, i++)

sum += a[i]
}

taskloop simd direc ve
Fabio Pitari, Cineca

137

taskloop and simd can be combined in the composite construct taskloop simd

each task of the taskloop will be vectorized (or tried to)

every clause of both simd and taskloop can be applied

C/C++

#pragma omp taskloop simd
// for loop

Fortran

!$omp taskloop simd
! do loop
!$omp end taskloop

Op onal exercise
Fabio Pitari, Cineca

138

Try to repeat the previous exercises using tasks paralleliza on

Compare the results of tasks paralleliza on with the ones of worksharing approach

Conclusions

Some important notes
Fabio Pitari, Cineca

140

Always check the OpenMP version installed

If interested, www.openmp.org is your bible!

Some material, in par cular for the Tasks sec on, is derived from the Eurofusion
Webinars by Chris an Terboven and Michael Klemm, whom I thank. If you want to
go deeper with OpenMP topics you can find their very good lectures in the
"Webinars on GPUs EUROfusion" youtube channel

Credits
Fabio Pitari, Cineca

141

A special thank to Paola Arcuri, Gianfranco Abrusci, Alessandro Colombo and to all the
colleagues who contributed more or less synchronously and more or less consciously to
these slides so far:

Mirko Cestari, Ni n Shukla, Fabio Affinito, Cris ano Padrin, Neva Besker, Pietro Bonfá,
Gian Franco Marras, Marco Comparato, Massimiliano Culpo, Giorgio Ama , Federico
Massaioli, Marco Rorro, Vi orio Ruggiero, Francesco Salvadore, Claudia Truini, etc

Fabio Pitari, Cineca

142

Thank you for your a en on!
https://sctrain.eu/

https://sctrain.eu/

	Introduction
	OpenMP vs MPI
	OpenMP execution model
	OpenMP programming model
	OpenMP memory model

	Worksharing constructs
	Worksharing constructs rules
	for/do loop
	sections
	single
	workshare

	How to avoid data races
	Critical construct
	Reduction clause
	Barrier construct
	Atomic construct

	SIMD
	Basic concepts
	Autovectorization
	OpenMP simd directive
	Vectorization of functions

	Tasks
	Basic concepts
	Data scopes and reduction
	Tasks synchronization
	Taskloops

	Conclusions
	

