Introduction to HPC II

Domitilla Brandoni, CINECA

d.brandoni@cineca.it

Univerza v Ljubljani
TECHNISCHE UNIVERSITÄT
WIEN

HPC laws

$$
\begin{aligned}
& \text { Moore's law } \\
& \text { «The number of transistors per processor } \\
& \text { will double every year and the speed will } \\
& \text { double every } 18 \text { months» }
\end{aligned}
$$

Moore's law

\qquad
\qquad
\qquad
\qquad
\qquad

Dennard's law

Ideal:
$L($ next $)=L / 2 \quad V($ next $)=V / 2 \quad F($ next $)=F^{*} 2 \quad P($ next $)=P$

Real:
$L($ next $)=L / 2 \quad V($ next $)=\sim V \quad F($ next $)=F^{*} 2 \quad P($ next $)=4 * P$

CPU now $->C P U_{\text {next }}$

Amdhal's law

Parallelism

How to build a wall?

SCtrain lamex

 SCtrain

How to build a wall?

 P䟚
 P䟚

How to build a house?

Is it fine?

Is it fine?

Communication

Is it enough?

Communication

How to reduce building time

Shared vs MP

SHARED MEMORY

MESSAGE PASSING

Shared memory vs message passing

IMPI

Message Passing + shared memory
SCtrain|

HPC parallel process

$\mathrm{T}_{/ /}=\mathrm{T}_{\mathrm{s}}[(1-\mathrm{P})+(\mathrm{P} / \mathrm{N})]+\mathrm{T}_{\text {sync }}+\mathrm{T}_{\text {com }}$

