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“This offering is not approved or endorsed by OpenCFD ® Limited, the producer of the
OpenFOAM ® software and owner of the OPENFOAM ® and OpenCFD ® trade marks.”

"This material is based on An introduction to Computational Fluid Dynamics using
OpenFOAM with advanced topics by Riccardo Rossi, Head and Founder of RED Fluid
Dynamics, March/April 2021".
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We use the finite‐volume method (FVM) to solve the flow governing equations. The
integral form of the scalar transport equation (STE) must be discretized and solved:∫

V

∂ϕ

∂t dV +

∫
A
(ujϕ)nj dA =

∫
A

D ∂ϕ

∂xj
nj dA +

∫
V
(Sϕ) dV

Discretization steps:

Numerical integration

Time‐advancement schemes

Differentiation schemes

Interpolation schemes
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The important properties of a numerical schemes are:

Convergence/accuracy: the numerical solution should converge to the exact solution
of the PDE as the mesh size tends to zero

Conservation: underlying conservation laws should be respected at the discrete level

Boundedness: quantities like density, temperature and concentration should remain
non‐negative and free of spurious wiggles/spikes

And what about the spectral‐resolution?



The discrete transport equation
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If we integrate in time the semi‐discrete transport equation and we apply the
unconditionally stable backward Euler scheme we get:

(ϕn+1 − ϕn)∆V +
∑

f
(un

j ϕ
n+1)f Afj =

∑
f

Df
∂ϕn+1

∂xj

∣∣∣∣
f
Afj + Sn+1

ϕ ∆V

Note that themidpoint rule is second‐order accurate
only if variables are evaluated at the cell/face centroid.



Discretization of differential operators
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(ϕn+1 − ϕn)∆V +
∑

f
(un

j ϕ
n+1)f Afj =

∑
f

Df
∂ϕn+1

∂xj

∣∣∣∣
f
Afj + Sn+1

ϕ ∆V

We need to define the discretization method for the following operators:

Cell‐centered gradient

Diffusion operator

Convection operator



Cell gradient computation I
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The computation of cell‐centered gradients is widely used in finite‐volume schemes for
convection interpolation and diffusion discretization.
On a uniform, one‐dimensional stencil a second‐order accurate formula based on Taylor
expansions is the following:

∂ϕ

∂x

∣∣∣∣
j
=

ϕj+1 − ϕj−1

2∆x − 1

6

∂3ϕ

∂x3

∣∣∣∣
j
∆x2 +O(∆x3)



Cell gradient computation II
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In the framework of unstructured finite‐volume schemes, cell‐centered gradients can be
estimated via the Gauss‐Green theorem:∫

V

∂ϕ

∂xj
dV =

∫
A
ϕnj dA

which, using themidpoint rule to evaluate
the surface and volume integrals, gives:

∂ϕ

∂xj

∣∣∣∣
c
≈ 1

∆V
∑

f
ϕfAfj

where ϕf is the face‐interpolated value.



Cell gradient computation III
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The face interpolated value as well can be estimated via Taylor expansions:

ϕ0 = ϕf −
∂ϕ

∂s

∣∣∣∣
f
∆s0 +

∂2ϕ

∂s2
∆s20
2

+O(∆s30)

ϕ1 = ϕf +
∂ϕ

∂s

∣∣∣∣
f
∆s1 +

∂2ϕ

∂s2
∆s21
2

+O(∆s31)

ThemidPoint scheme provides a simple second‐order
formula on regular grids (∆s0 = ∆s1):

ϕMP
f =

ϕ1 + ϕ0

2
+O(∆s2)



Complex geometries
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In complex geometries the computational grid usually deviates from regular elements and
quality parameters are thus introduced.

Mesh quality:
Aspect ratio (∆s1/∆s0)
Non‐orthogonality (β)

skewness (d)



Grid aspect ratio
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Mid‐point rule:
ϕM

f =
ϕ1 + ϕ0

2
+O(∆s2)

Linear interpolation:

ϕL
f = ϕ0λ0 + ϕ1(1− λ0) +O(∆s2)

λ0 =
∆s0
∆s , ∆s = ∆s0 +∆s1



Grid skewness
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Mid‐point rule:
ϕM

f =
ϕ1 + ϕ0

2
+O(∆s2)

Skew‐corrected intepolation:

ϕL
m = ϕ0λ0 + ϕ1λ1 , λ1 = 1− λ0

(∇ϕ)L
m = (∇ϕ)0λ0 + (∇ϕ)1λ1

ϕSC
f = ϕm + (∇ϕ)m · d



Diffusion discretization I
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The discretization of the diffusive flux in the STE requires to evaluate the scalar gradient
at the face centroid: ∫

A
D ∂ϕ

∂xj
nj ≈

∑
f

D ∂ϕ

∂xj

∣∣∣∣
f
Afj

On regular grids, the face gradient can be evaluated via the central scheme:

∂ϕ

∂xj
≈ ϕ1 − ϕ0

∆s +O(∆s2)



Diffusion discretization II
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On irregularmeshes, a correction for the grid non‐orthogonality, when severe, might be
needed to improve the accuracy of the numerical solution:

∂ϕ

∂xj

∣∣∣∣
f
Afj = |∆|ϕ1 − ϕ0

∆s + k · (∇ϕ)f

where

(∇ϕ)f = (∇ϕ)0λ0 + (∇ϕ)1λ1

is used to build up the correction term.



Convection interpolation operators I
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The discretization of the convection operator requires to evaluate the field at the face
centroid.

A second‐order accurate central interpolation on irregular meshes can be obtained using
a two‐sided linear expansion [1]:

ϕf =
1

2
(ϕ0 + ϕ1) +

1

2

[
∂ϕ

∂xi

∣∣∣∣
0

R0i +
∂ϕ

∂xi

∣∣∣∣
1

R1i

]
+O(∆s2)

Alternatively, using a one‐sided linear expansion, upwind schemes are obtained:

ϕf = ϕu +
∂ϕ

∂xi

∣∣∣∣
u
Rui +O(∆s2)

[1] P. Batten, C. Lambert, D.M. Causon, Positively conservative high‐resolution convection schemes for unstructured elements, Int. J. Numer. Methods Eng. 39 (1996) 1821.



Convection interpolation operators II
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Several convection interpolation schemes have been proposed in the context of the FV
framework. We report here the low‐order and high‐order upwind and central
interpolation schemes:

Upwind (FOU) : ϕf = ϕu +O(∆s)

linearUpwind (SOU) : ϕf = ϕu +
∂ϕ

∂xi

∣∣∣∣
u
Rui +O(∆s2)

midPoint (LOCD) : ϕf =
1

2
(ϕ0 + ϕ1) +O(∆s2)

reconCentral (HOCD) : ϕf =
1

2
(ϕ0 + ϕ1) +

1

2

[
∂ϕ

∂xi

∣∣∣∣
0

R0i +
∂ϕ

∂xi

∣∣∣∣
1

R1i

]
+O(∆s2)



Slope limiter
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In the framework of unstructured finite‐volume schemes, slope‐limiting techniques can
be used to keep the face‐interpolation bounded.

ϕf = ϕu + min(αf)
∂ϕ

∂xj

∣∣∣∣
u
Ruj

For each cell, the limiter is given by:

αf =


min

(
1, ϕmax−ϕu

ϕf−ϕu

)
if(ϕf − ϕu) > 0

min
(
1, ϕmin−ϕu

ϕf−ϕu

)
if(ϕf − ϕu) < 0

1 otherwise

where ϕu is the cell‐centroid value at the upwind side of the face.



OpenFOAM fvSchemes
Simone Bnà, Cineca

18

In OpenFOAM, the schemes for gradient (cell‐centered) computation and
diffusion/convection discretization are specified in the fvSchemes dictionary file located
in the system folder:

gradSchemes
{

default linear;
grad(u) cellLimited Gauss skewCorrected midPoint 1;

}
divSchemes
{

div(phi, u) Gauss linearUpwind grad(u);
}
laplacianSchemes
{

Laplacian(D, u) Gauss linear corrected;
}



example I: computation of cell gradient
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Test function:

T(x, y) = x2 + y2

∂T
∂x = 2x , ∂T

∂y = 2y



example I: computation of cell gradient
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Sx ‐ Gauss midPoint Sx ‐ Gauss skewCorrected linear



example I: computation of cell gradient
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Sy ‐ Gauss midPoint Sy ‐ Gauss skewCorrected linear



example II: Advection of a scalar profile I
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The (pure) advection of a scalar profile in uniform flow can be used to investigate the
conservation and spectral properties of CIOs.

Flow parameters:

∂ϕ

∂t + U∂ϕ

∂x = 0 ,U = 1

ϕ(x, 0) =
{

cos2(2πx) if|x| ≤ 0.25

0 if|x| > 0.25



example II: Advection of a scalar profile II
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example II: Advection of a scalar profile III
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Thank you for your attention!


