
This project has been funded with support from the European Commission.

This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

Hands-on with OpenFOAM part II

G. Amati, CINECA

R. Ponzini, CINECA

A. Memmolo, CINECA

09/22

Outline

Running OpenFOAM on an HPC cluster

• Running a CFD case to production

• Running OpenFOAM in parallel

• Evaluating job scaling performances for better resources usage

• Accessing and managing of a remote simulation

• Data monitoring and saving

2

Ponzini , CINECA

• In your working space you will find the directory named:

Case_Re200_IcoFoam_par/

the main dictionary are modified and adapted from Wolf Dynamics set
of 2D cylinder cases (see references at the end of this document)

For visualization using paraview move vtk file locally via scp: e.g.
• Scp xxxxxxxxxxxx xxxxxxxxxxxx

3

Implementation in OpenFOAM

• Once a case setup is ok for our needs, like the cylinder laminar shedding we
made in the hands-on session part I, it is quite common to perform a mesh
sensitivity analysis

• To do so at least 3 meshes with different cell size spacing are needed
• The way the mesh changes can be designed is various and out of the scope

of this hands-on session
• Usually, the mesh size is doubled or halved moving from one mesh to the

other
• We will play with mesh we already have in different ways to get an

understanding of how mesh size can impact with time to result, the
numerical time stepping (CFL limits) and how parallel computing can be
used to support our needs

4

Running a CFD case to production

• We have a 9200 2D mesh cell, and we have arrived to obtain a stable
period shedding phenomenon in our CFD model as desired.

• We can first test the given model at different number of processor

• It is always important to test the given hardware to understand if the
performances are aligned with our expectations and needs

• In our hardware, in each node we can run on up 48 cores

• To perform our test we can set a given value of the physical time we want
to achieve in our case and see for different processors values (1,2,4,8,…,48
) what is the Execution time we obtain. Then we can rank the results
according to a selected metrics. The basic concept is lower Execution time
is better but also other concepts alike efficiency and speed-up are relevant.

5

Running a CFD case to production

• OpenFOAM is natively suited to run in parallel on a variety of
hardware using message passing (MPI)

• To do so we only need to run the decomposePar functionality
before execute the solver section of our standard workflow.

• Several options are presents but in general we can just run it
without any parameter

• The decomposePar functionality is instructed using a dictionary
(system/decomposeParDict) that indeed specify how the domain
decomposition should take place

• To our need we can start with a very common and robust scotch
method that requires only the number of subdomain to be
executed

6

Running OpenFOAM in parallel

With this file you can control

• number of task (decomposition)

• Method used for decomposition
• Scotch

• Xxxxxx

• Xxxxxx

• Decomposition is crucial for complex
geometries and high number of tasks

• It is serial: can be very slow for big grid
and/or many task

7

decomposeParDict

Distributed Memory Parallelism:

• Each task has its own memory.

• The OF structure is replicated for each processor (I.e. task)

• In this directory will be written the output

• Two possibility to analize results
1. First reconstruct global field, then using foamToVTK

2. Using foamToVTK on different processor: I.e. you need #n
different vtk files do visualize the whole domain

foamToVTK -case processor0

8

Distributed Memory

9

log.decomposeParDict

10

Generated grids

ReconstructPar allow to build a single
output collecting data from different
processors

• It builds the "serial" structure of
output

• It is serial: can be very slow for big grid
and/or many task

11

reconstructPar

• Since we are starting form a given mesh and solution our parallel testing
workflow will look like this:

module purge
module load profile/eng autoload openfoam/10
decomposePar >& log. decomposePar
mpirun icoFoam –parallel >& log.icoFoam

• We will also:
• Shut off the data saving at each time
• Shut off the function object data saving
• set the end time at 600 (starting form time 500): 100 seconds with a dt of 0.05

seconds is equivalent to instruct for a 2000 iterations of the solver. This value should
be sufficient to get meaningful time results at different parallelism.

12

Running OpenFOAM in parallel

• More important in all this hands-on session we will run our CFD jobs in batch
submitting the job to queuing system

>>> sbatch -A tra22_Sctrain -p g100_usr_prod --reservation=s_tra_sc1
submit_job.sh

• With this command we are requesting to the shcheduler to execute where
possible, according to Accounting and partition, our submit_job.sh script

13

Running OpenFOAM in batch mode

14

Running OpenFOAM in batch mode

:::
submit_job.sh file content
:::
#!/bin/bash
#SBATCH --time=2:0:00
#SBATCH --ntasks-per-node 48
#SBATCH --ntasks-per-socket=24
#SBATCH --sockets-per-node=2
#SBATCH -N 1

echo $SLURM_JOBID > jobid.$SLURM_JOBID
cd $SLURM_SUBMIT_DIR
runjobid=$SLURM_JOB_ID
#run the workflow by means of the run_par.sh file
sh ./run_par.sh

15

Running OpenFOAM in batch mode

:::
run_par.sh file content
:::

#!/bin/bash

module purge

module load profile/eng autoload openfoam/10

decomposePar

mpirun icoFoam -parallel >& log.icoFoam

• The first test we made on 1,2,4 processors show that the time to solution is not getting any better after 2 processors
and that even in that case the efficiency is not ideal

• This can be expected since we are using a spreading a number of cells/computational core that is too small and we
are wasting the benefit of the faster number crunching by requesting too much communication

16

Evaluating job scaling

N processors
[-]

Execution
Time [s]

Efficiency[%] Mesh cells
/core

1 114.38 - 9200

2 78.50 73% 4600

4 81.80 35% 2300
0

20

40

60

80

100

120

0 1 2 3 4 5 6

Ti
m

e
[s

]

N processors [-]

• In order to try to use in a better way our cluster and see the benefit of
parallelism in action we can artificially increase our mesh size

• We can do this in many ways

• For instance, we can add cells at the blockMeshDict level or we can
use the mirrorMesh utility

• We will first increase by a factor of 100 our mesh requesting 10x
points in each direction in XY plane (in blockMeshDict): we will get a
mesh that is going to be: 920.000 cells
• Copy blockMeshDict.big in blockMeshDict

• We will repeat our test and see if we can get any improvement

17

Evaluating job scaling

• In order to try to use in a better way our cluster and see the benefit of
parallelism in action we can artificially increase our mesh size

• We can do this in many ways

• For instance, we can add cells at the blockMeshDict level or we can
use the mirrorMesh utility

• We will see both in action

• We will first increase by a factor of 100 our mesh requesting 10x
points in each direction in XY plane (in blockMeshDict): we will get a
mesh that is going to be: 920.000 cells

• We will repeat our test and see if we can get any improvement

18

Evaluating job scaling

• Mesh size 920.000 cells

19

Evaluating job scaling

N processors [-] Execution
Time [s]

Efficiency [%] Mesh cells /core

1 9795 - 920000

12 979 83% 76000

24 560 73% 38000

48 439 46% 19000 0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

Ti
m

e
[s

]

Nrpocessors [-]

Benefit with parallel is significant: factor of about 22x in Exec Time using 48 cores.
Efficiency is 46%, ideal speedup should be 48x.

• Considering that with 0,92 mln cells we do not see any benefit to move
out of a single node, i.e. increasing the number of processor over 48, we
will first generate a larger mesh using the mirrorMesh utility and then use
this mesh to make scalability test over different nodes.

• We will mirror by the Y-axis a couple of time to get the final mesh

• The benefit of using this utility is related to the effectiveness of scalability
testing using mesh with the same mesh cell size but of increased number
of cells. We therefore do not expect any changes to be applied to the
delta-t or to other numerical parameters since the physics we are solving
is exactly the same

20

Evaluating job scaling

• Mirrored mesh two time
starting form the 920.000
mesh

• Total cells count of
3.680.000 cells

• Topology of the mesh is the
same

• Min/max cell size is the
same

• deltaT used to respect CFL
<1 is the same

21

Evaluating job scaling

After First Mirror execution:920.000 x2 cells

After Second Mirror execution: 920.000 x2 x2 cells

Original mesh domain: 920.000 cells

22

Evaluating job scaling

• We will repeat our scalability test using now an incremental step based on the number of nodes,
i.e we will increase each time the number of cores of 48 units

23

Evaluating job scaling

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400 450

Ti
m

e
[s

]

Cores [-]

N processors [-] Execution
Time [s]

Efficiency [%] Mesh cells /core

48 2374 - 76000

96 1591 75% 38000

192 1351 45% 19000

384 1753 18% 9500

• From our scalability test we can say that our case is scaling is strongly
related to the mesh size

• The mesh size of a problem should be assessed using a mesh sentivity
approach to understand the minimal mesh size that solve a reference
problem within a certain uncertainty bound

• There is an optimal mesh cell density / computational core that we can
define for our problem once the mesh size is given and that we can use for
similar problem/solver setup/mesh topology

• In our problem we found that starting from a reasonable mesh size a value
of about 20.000 mesh cells/computational core should be fine to avoid
computational resources wasting and severe sub-optimal hardware usage

24

Evaluating job scaling

• When dealing with a remote simulation, i.e. runned on a hardware that is not our
desktop pc, we have to understand that there are looking at a process that is
hosted/runned somewhere else

• There are several relevant positive side effect, like the possibility to shutdown and
reconnect to the process without loosing our job

• To monitor our run, beside the mentioned function objects, we can connect to the
standard output by means of Linux command like: tee, tail, head, more,… and so on

• We should also be able to ‘drive’ our simulation and stop it for our needs

• Stopping the remote simulation can be done by changing the endTime to our need or
using dedicated function objects like stopAtFile

25

Accessing a remote simulation

• In order to stop and save data of our simulation in any moment we
can do different things:
• Modifying the endTime parameter with the writeNow value or with a give

time we like

• Or using the stopAtFile functionObject

26

Accessing a remote simulation

• When running in parallel we are usually dealing with a mesh size that is not suitable for a
desktop pc hardware (million cells)

• Data saving and monitoring of the simulation should be ideally planned in advance in order
to save only necessary data

• This consideration is especially true when we are dealing with a time variant physical
problem like in the case of the vortex shedding

• Preferably data should also be lighter than the full set of data output contained in a single
time instant

• Lightweight data still meaningful for visualization and monitoring of the simulation are:
• Residuals (necessary for numerical assessment of the simulation)
• Forces and forces coefficients (necessary for physical assessment of the simulation)
• Point/line probes
• 2d surfaces (cut-planes,…) very useful for visualization and animation
• 3d surfaces (iso-surfaces) very useful for visualization and animation

27

Data monitoring and saving

• For instance, the disk space usage for our larger mesh will look like
this:
• Single time instant data (full): 500 MB

• Single time instant data(2D slice): 290 MB

• Please note that this is a 2d case, in 3d the difference is much higher

28

Data monitoring and saving

1. Try to submit and monitor your simulation in parallel

2. Play with the number of cores to be used and monitor the timing

29

Hands-on what to do

Thank you for your attention!

http://sctrain.eu/

This project has been funded with support from the European Commission.

This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

http://sctrain.eu/

