

TITLE – SESSION2

Jurij Gregorc, University of Ljubljana, Faculty of Mechanical Engineering

9/2022

Co-funded by the Erasmus+ Programme of the European Union This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

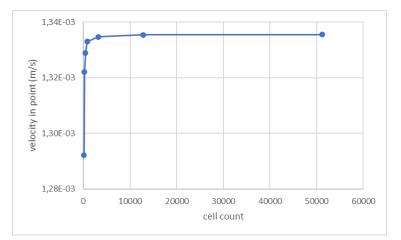
Agenda

Jurij Gregorc, University of Ljubljana, FME

- Mesh convergence
- Divergence schemes
- Hands on: Grid convergence vs divergence scheme for the case of laminar flow in 2D U-bend

Mesh convergence

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP


Jurij Gregorc, University of Ljubljana, FME

• Let's play...

2D, laminar, isothermal, steady state, Re=700, domain 0.7m×7m

- Velocity in a point (x=0.35m, y=6.5m) of converged vs mesh density
- All quadrilateral cell sqewness=1, AR=5, GR=1

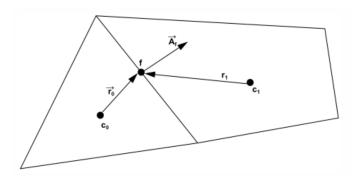
• Results of the simulation should always be mesh independent!

Mesh convergence

Jurij Gregorc, University of Ljubljana, FME

Simplified Richardson extrapolation

- Is a procedure to evaluate mesh independance
- Perform the same simulation on three meshes with mesh density ratio of 1:2:4
- Export the value of a variable in a point for all three simulations (say f)
- $f_1 = value \text{ on } fine \text{ mesh}, f_2 = value \text{ on } middle \text{ mesh}, f_3 = value \text{ on } coarse \text{ mesh}$
- Define factor of refinement r=2
- Compute rank of discretization $p = \ln((f_3-f_2)/(f_2-f_1))/\ln(r)$
- Compute extrapolated value $f_{ex} = \frac{f_1 (f_2 f_1)}{r^p 1}$
- Compute $RDE_z = \frac{f_z f_{ex}}{f_{ex}}$


Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Divergence schemes

Jurij Gregorc, University of Ljubljana, FME

- Remember 2nd session of yesterdays program
 - We limit or self to the convection term

$$\int_{V} \frac{\partial \rho \varphi}{\partial t} dV + \oint \rho \varphi \vec{v} \cdot d\vec{A} = \oint \Gamma_{\varphi} \nabla \varphi \cdot d\vec{A} + \int_{V} S_{\varphi} dV$$
$$\frac{\partial \rho \varphi}{\partial t} V + \sum_{f}^{N_{faces}} \rho_{f} \vec{v}_{f} \varphi_{f} \cdot \vec{A}_{f} = \sum_{f}^{N_{faces}} \Gamma_{\varphi} \nabla \varphi_{f} \cdot \vec{A}_{f} + S_{\varphi} V$$

SUPERCOMPUTING

Sctrain SUPERCOMPLE KNOWLEDGE PARTNERSHIP

Hands on: U-bend

Jurij Gregorc, University of Ljubljana, FME

- Use meshes similar to the one from Session1
- Prepare and execute the simulations for given case on all meshes for FOU and SOU
- Compare the results

Thank you for your attention!

http://sctrain.eu/

Co-funded by the Erasmus+ Programme of the European Union This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.