. SUPERCOMPUTING
SCtrain
PARTNERSHIP

Introduction to the
Message Passing Interface (MPI)

Claudia Blaas-Schenner A
\
VSC Research Center, TU Wien C 06/2021
Univerza v Ljubljaini
TECHNISCHE CINECA VSB TECHNICAL ITAINNOVATIONS
g UNIVERSITAT || || UNIVERSITY | NATIONAL SUPERCOMPUTING
— WIEN OF OSTRAVA | CENTER
?n%r%r\si\%rrsifairig =
R Co-funded by the This project has been funded with support from the European Commission.
o i Erasmus+ Programme This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use
* i % of the European Union which may be made of the information contained therein.

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

hands-on labs MPI SCtrain

e cp —a ~cblass/MPI . - copy the MPI exercises
e cd ~/MPI — go to the folder

* module load foss/2019a - @viz.hpc.fs.uni-lj.si
- GCC 8.2.0 & OpenMPI/3.1.3

* mplcCc program.c

* SLURM queuing system - MPI exercises can also be run interactively (error messages can be ignored)
e sbatch job.sh = submit (mpirun -n # ./a.out)

* squeue -u SUSER - check

* scancel JOB ID —> cancel

* slurm-*.out - output

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

acknowledgements SCtrain

These slides are a modified subset of the MPI course developed by

Rolf Rabenseifner, High-Performance Computing Center Stuttgart (HLRS).

Also the hands-on labs are developed by Rolf Rabenseifner, HLRS, and
can be downloaded from the HLRS website:
https://fs.hlrs.de/projects/par/par_prog ws/practical/MPI31single.tar.gz

https://fs.hlrs.de/projects/par/par_prog_ws/practical/MPI31single.zip

The MPI standard document (MPI1 4.0, June 9, 2021) is available from the MPI forum:

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf - available libraries for MIPI-3.1

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

goals and scope of VP! SCtrain

* MPI‘s prime goals
— provide a message-passing interface
— provide source-code portability

— allow efficient implementations MPI-4.0
available libraries are for MPI-3.1

current version (June 9, 2021)

* MPI also offers
— a great deal of functionality
— support for heterogeneous parallel architectures

* MPI-2.0, 2.1, 2.2, 3.0, 3.1

— important additional functionality, fit on new hardware principles
— deprecated MPI routines — with MPI-3.0 some deprecated features removed

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

message passing programming paradigm SCtra ‘ n

Each processor in a message passing program runs a sub-program:

* written in a conventional sequential language, e.g., C/C++ or Fortran,
* typically the same on each processor (SPMD), all variables are private
e communicate via special send & receive routines (message passing)

Q O .. O

sub-
program

(]

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

data & work distribution SC’[ram

* the system of size processes is started by special MPI initialization program
* the value of myrank is returned by special library routine
e all distribution decisions are based on myrank

myrank=0| | myrank=1| | myrank=2 Ts)ng' 1k)=
00000

S

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

domain decomposition — serial S Ctra | N

* X(lrj) = f (Xold (lrj)r Xold(i_lrj)r X514 (j—+lrj)r Xo14d (irj_l)/ X514d (i/j+1))

|_k|\

x (1,])

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

domain decomposition — parallel S Ctra \ N

* X(lrj> = f (Xold (lrj)r Xold(j—_lrj)r X514 (i+lrj)r Xo14d (j—/j_l)/ X514d (l/j+1))
L] <]
— X (i,j) p |
X (i,j) LY Important:
In each direction,
- _all halo data should be sent

L v together in one message
Communication / => best bandwidth

. J

[<]

L

X (i,]) l
A copy of that data, stored
Xoq Calculated ™~ in an additional “halo cell”

in this domain

x
I

in that domain

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

MPI process model SCtrain

* must be linked with an MPI library -2 mpicc, mpiicc,
mp1f90, mpiifort,

* must use include file of this MPI library -2 |#include <mpi.h> C/C++
use mpi f08 Fortran
use mpil
include "mpif.h’

* must be started with the MPI startup tool =2 mpirun, mpiexec, srun,...
mpirun -n # ./a.out

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

MPI function format & language bindings SCtra \ n

error = MPI XxxxXxXx (parameter,...);
MPI XxxxXXX (parameter,...);

— P ’ C/C++
call MPI Xxxxxx (parameter,...,lierror) Fortran

with mpi f08 ierror is optional
with mpi & mpif.h ierror 1s mandatory

MPI standard —language independend
each routine — programming languages: C / Fortran mpi_f08 / mpi & mpif.h

10

initializing & finalizing MPI SCtrain

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

#include <mpi.h> C/C++
#include <stdio.h>
int main(int argc, char *argv[])

{

MPI Init(&argc, &argv);
MPI Finalize();

}

program XxXXXX Fortran
use mpi f08
implicit none

call MPI INIT(ierror)

call MPI FINALIZE (ierror)
end program

from mpidpy import MPI

MPI Init(), MPI Init thread(), MPI Finalize()

python

mpldpy

MPI Is i1nitialized(), MPI Is finalized()

11

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

communicator mpi COMM WORLD S CJ[3 \ N

* all processes (= sub-programs) of one MPI program are combined in the
communicator MPI_COMM_WORLD (predefined handle)

* sizeis the number of processes in a communicator

e each process has its own rank in a communicator
starting with 0 — ending with (size-1)

@ @ : MPI_COMM_WORLD

(5)
OROFS

12

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

rank & size SCtrain

* rank —identifies the different processes — basis for any work and data distribution

int MPI Comm rank (MPI Comm comm, 1int *rank) C/C++

* size —how many processes are contained within a communicator?

int MPI Comm size (MPI Comm comm, int *size) C/C++

13

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

exercise: Hello world! SCtrain

e write a minimal MPI program that prints “Hello world!“ by each MPI process
 compile and run it on a single processor
* run it on several processors in parallel
* modify your program so that
— every process writes its rank and the size of MPI_COMM_WORLD
— only process ranked 0 in MPI_COMM_WORLD prints “Hello world”

 why is the sequence of the output non-deterministic?

I am 2 of 4
Hello world
I am O of 4
I am 3 of 4
I am 1 of 4

14

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

solution: Hello world! ce++ — SCtrain

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv([])

{

int my rank, size;
MPI Init(&argc, &argv);

MPI Comm rank (MPI COMM WORLD, &my rank);
MPI Comm size (MPI COMM WORLD, &size);

if (my rank == 0)
{ printf ("Hello world!\n"); }
printf ("I am process %i out of %i\n", my rank, size);

MPI Finalize();
return 0O;

15

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

point-to-point communication SC train

* messages are packets of data moving between MPI processes
* necessary information for the message passing system:

— sending process — receiving process } i.e., the ranks
— source location — destination location
— source data type — destination data type - Il
— source data size — destination buffer size
O @ .
sub-

program

communication network
S

16

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

messages SCtrain

* a message contains a number of elements of some particular datatype
 MPI datatypes:
— basic datatypes
— derived datatypes
* derived datatypes can be built up from basic or derived datatypes
e Ctypes are different from Fortran types

e datatype handles are used to describe the type of the data in the memory

example: message with 5 integers

2345 | 654 |96574 | -12 7676

17

SUPERCOMPUTING

MPI basic datatypes ce++ SCtrain |oomes
PARTNERSHIP

MPI Datatype handle C datatype Remarks

MPI_CHAR char Treated as printable character

MPI_SHORT signed short int example: message with 5 integers

MPIL_INT signed int

MPI_LONG signed long int 2345 | 654 | 96574 | -12 7676

MPI_LONG_LONG

signed long long

MPI_SIGNED_CHAR

signed char

Treated as integral value

MPI_UNSIGNED_CHAR

unsigned char

Treated as integral value

MPI|_UNSIGNED_SHORT

unsigned short int

MPI_UNSIGNED

unsigned int

MPI_UNSIGNED_LONG

unsigned long int

MPI_UNSIGNED_LONG _LONG

unsigned long long

MPI1_FLOAT float

MPI_DOUBLE double Further datatypes,
MPI_LONG_DOUBLE long double see, e.g., MPI-4.0,
MPI_BYTE Annex A.1
MPI1_PACKED

arguments for MPI send/recv
count=5
datatype=MPI_INT

declaration of the buffers
int arr[5];

18

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

point-to-point communication SCtrain

e communication between two processes
* source process sends message to destination process

 communication takes place within a communicator, e.g., MPI_COMM_WORLD

processes are identified by their ranks in the communicator

communicator

D & Do
source @

19

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

sending & receiving amessage SC train

int MPI Send(void *buf, int count, MPI Datatype datatype,
int dest, int tag, MPI Comm comm)

* sending:

int MPI Recv(void *buf, int count, MPI Datatype datatype,
° receiving. int source, int tag, MPI Comm comm,
' MPI Status *status)

* toreceive from any source — source = MPI_ANY_SOURCE
e toreceive fromanytag — tag= MPI_ANY_TAG

From: source rank
tag

e actual source and tag are returned in status

To: * if not interested pass MPI_STATUS_IGNORE

destination rank

20

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

requirements for p2p communication S Ctra \ N

* sender must specify a valid destination rank
* receiver must specify a valid source rank
* the communicator must be the same

* tags must match
float sndbuf[n]; float rcvbuf[n];

MPI_Send(sndbuf, n, MPI_FLOAT;...) MPI_Recv(rcvbuf, n, MPI_FLOAT;...)

* type matching: 2

@ send-buffer’s (C or Fortran) type must match with the send datatype handle
2) send datatype handle must match with the receive datatype handle

@ receive datatype handle must match with receive-buffer’s (C or Fortran) type

receiver’s buffer must be large enough

21

communiation modes

SCtrain

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Sender mode

Definition

Notes

Synchronous send

Only completes when

MPI_SSEND the receive has started
Buffered send Always completes needs application-defined
MPI_BSEND (unless an error occurs), | buffer to be declared with

irrespective of receiver

MPI_BUFFER_ATTACH

Standard send Either synchronous uses an internal buffer
MPI_SEND or buffered
Ready send May be started only if highly dangerous!
MPI_RSEND the matching receive

is already posted!
Receive Completes when a same routine for
MPI_RECV message has arrived all communication modes

< debuging

< production

22

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

exercise: ping pong SCtrain

. . . : : Po P,
e write a program according to the time-line diagram: p p _
0 1
— process 0 sends a message to process 1 (ping) 5 ot
\g %\‘ S
— after receiving this message, < ¢
process 1 sends a message back to process 0 (pong) ‘ﬁ \ 2
* repeat this ping-pong with a loop of length 50 — 3
e add timing calls before and after the loop: “—) ‘po/“%
. C/C++: double MPI_ Wt id); T
/ ouble MPI_Wtime(void); — o | —
e MPI_WTIME returns a wall-clock time in seconds — =
ly at 0 -
* only at process 5
' . \ § /
— print out the transfer time of one message — 2| | ~—
— inps, i.e., delta_time / (2*50) * 1e6 £ —
\ \ _ £
y :; y .

23

exercise: ping pong

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

SCtrain

rank=0 rank=1

Send‘(d7est=1)
(tag=17)
Recv (source=0)
Send (dest=0)

(tag=23)
Recv (source=1)

—

if (my_rank==0)
MPI_Send(... dest=1...)
MPI_Recy(... source=1 ...)
else
MPI_Recv(... source=0...)
MPI_Send(... dest=0...)
fi

24

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

solution: ping pong C/C++ SC’[ram

start = MPI Wtime () ;

for (1 = 1; i <= 50; i++)
{
if (my rank == 0)
{
MPI_Send(buffer, 1, MPI FLOAT, 1, 17, MPI_COMM_WORLD);
MPI_Recv(buffer, 1, MPI FLOAT, 1, 23, MPI COMM WORLD, &status) ;
}
else 1if (my rank == 1)
{
MPI_Recv(buffer, 1, MPI_FLOAT, o, 17, MPI_COMM_WORLD, &status) ;
MPI Send (buffer, 1, MPI FLOAT, 0, 23, MPI COMM WORLD) ;

}
}

finish = MPI Wtime () ;
1f (my rank == 0)

printf ("Time for one messsage: %f micro seconds.\n",
finish - start) / (2 * 50) * leo6); =

25

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

nonblocking communication S trgin

—> to avoid idle times, serializations and deadlocks
- halo communication

Data calculated by
m one MPI process
VAR ﬂ Halo data

cyclic boundary conditions:

- -
O o o mm s Em mm Em

non-cyclic: BISN| N ISN| N

26

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

blocking = risk deadlocks & serializations S Ctra | ﬂ

if the MPI library chooses the synchronous protocol

. timelines of all processes
cyclic boundary:

MPI_Send

MPI_Send(..., right_rank, ...) _*_)

MPI_Recv(..., left_rank, ...) — >
SN deadlock

— >

non-cyclic boundary:

MPI Send
if (myrank < size-1) —— g
MPI_Send(..., left, ...); e >
if (myrank > 0) — 5 -
MPI_Recv(..., right, ...); IR - 5, serialization
MPI_Recv

27

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

nonblocking communication SCtrain

separate communication into three phases: MPI_Isend(...)

* initiate nonblocking communication doing some other work

— routine name starting with MPI_I... MPI_Wait(...) ;
— incomplete @

- itis local, returns immediately,
returns independently of any other process’ activity

—>do some work (perhaps involving other communications?)
* wait for nonblocking communication to complete
— the send buffer is read out, or

— the receive buffer is filled in

28

. . . . SUPERCOMPUTING
nonblocking timelines SCtrain leomes

PARTNERSHIP

-~
MPI_lsend MPI Recv HPI_Wait
L x >
m \:75 - PI_Wait would really wait, if for the
IS local MPI_Isend, the MPI_Recv in the
o corresponding process is not yet
finished
>
ated 1 1 -
ted no serialization
>
>
>
, \{ ... or it will be received }
T | o) — N latest in the MPI_Wait
the rgcreei\c,:_sbeu:f::) MPI_Send sends I ... and may already receive the l
= _the message ... message from the other process -

29

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

request handles SCtrain

predefined handles
— defined in mpi.h / mpi_f08 / mpi & mpif.h
— communicator, e.g., MPI_COMM_WORLD
— datatype, e.g., MPI_INT, MPI_INTEGER, ...

handles can also be stored in local variables, e.g., in C: MP|_Datatype, MPI_Comm

request handles

are used for nonblocking communication

must be stored in local variables, in C/C++: MPI_Request, Fortran: TYPE(MPI_Request)

the value (INTEGER)
— is generated by a nonblocking communication routine

— is used (and freed) in the MPI_WAIT routine

30

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

nonblocking synchronous send S Ctra \ N

- ss for debugging only

- s for production code

MPI Issend(&buf, count, datatype, dest, tag, comm,
[OUT] &request handle);

{

MPI Wait ([INOUT] &request handle, &status)

e buf must not be modified between Issend and Wait
* nothing returned in status (because send operations have no status)
* “Issend + Wait directly after Issend” is equivalent to blocking call (Ssend)

31

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

nonblocking receive SCtra \ f

MPI Irecv (buf, count, datatype, source, tag, comm,
[OUT]‘grequest_handle);

MPI Walt[INOUT] é&request handle, &status)

From: source rank

e buf must not be used between Irecv and Wait tag

* message status is returned in Wait

To:

* “Irecv + Wait directly after Irecv” is equivalent to blocking call (Recv) o
destination rank

32

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

blocking and nonblocking S Ctra 18

* send and receive can be blocking or nonblocking

* a blocking send can be used with a nonblocking receive and vice-versa

* nonblocking sends can use any mode

e standard — MPI_ISEND

* synchronous — MPI_ISSEND
* buffered — MPI_IBSEND
* ready — MPI_IRSEND

* synchronous mode affects completion, i.e. MPl_Wait / MPI_Test,
not initiation, i.e., MPI_I....

* A nonblocking operation immediately followed by a matching wait
is equivalent to the blocking operation o

33

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

completion SCtrain

MPI Wait(&request handle, &status);
MPI Test(&request handle, &flag, é&status);

* one must
— WAIT or

— loop with TEST until request is completed, i.e., flag ==
or .TRUE.

 multiple nonblocking communications (several request handles):
MPI_[Wait|Test]any, MPI_[Wait|Test]all, MPI_[Wait|Test]some

34

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

exercise: ring SCtrain

e asetof processes are arranged in a ring my_rank
* each process stores its rank 0 TN Init
() InMPICOMM_WORLD nto) ond b
an integer variable snd_buf . 0
* each process passes this on d A
. . : * sum
2 to its neighbor on the right (_/ 2 > 0
3 e each processor calculates
9 the sum of all valu.es o | /\ my_rank my_rink
9 * repeat(2 —®W|th “size” iterations 2 - 1 i
size = number of processes), i.e.
(P) snd_buf snd/buf
* each process calculates sum of all ranks 5 A
* use nonblocking MPI_Issend [/ P S R 4
* to avoid deadlocks 5“1'“ | \S%m

* to verify the correctness, because
blocking synchronous send will cause a deadlock

35

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

exercise: ring SCtrain

| K |)C/C++:
Initialization:@ my_ran dest = (my_rank+1) % size;

Each iteration: @ source = (my_rank-1+size) % size;

2
23@® ETETEE
@ @ \ Single

/’I rcv buf | Program !!!
1®
| sum |

| my_rank | 1 L my_rank |
"® ¢ Sir:EIe Program !!I!” —_— ,,@
-stat ts i1l
2) snd_buf | roTsemens 9{ snd_buf |

@ 3 - “@‘6

| rcv buf [| rcv buf |

s s

| sum | [__sum

36

. . . SUPERCOMPUTING
solution: ring e SCtrain ke

int snd buf, rcv buf, sum;
int right, left;

int sum, i, my rank, size;
MPI Status status;

MPI Request request;

MPI Init (&argc, &argv);
MPI Comm rank (MPI COMM WORLD, é&my rank);
MPI Comm size (MPI COMM WORLD, &size);

Synchronous send (Issend) instead of standard)

right = (my rank+1 % size; .

J _ (my_) . o i . send (Isend) is used only to demonstrate the use
left = (my rank-l+size) % size; i k
sum = 0; - of the nonblocking routine resolves the deadlock
snd buf = my rank; (or serialization) problem.
for(1 = 0; 1 < siz A real application would use standard Isend().)

{
MPI Issend(&snd buf, 1, MPI INT, right, 17, MPI_COMM WORLD, &request);
?@ MPI Recv (&rcv buf, 1, MPI_INT, left, 17, MPI_COMM WORLD, &status);
MPI Wait (&request, &status);
Qﬁ%ﬁD snd buf = rcv buf;
sum += rcv buf;

}

printf ("PE%i:\tSum = %i\n", my rank, sum);
MPI Finalize(); m

37

. SUPERCOMPUTING
SCtrain
PARTNERSHIP

Thank you for your attention!

http://sctrain.eu/

Univerza v Ljubljaini

N}

AN
il
[EHIRN B

E:

TECHNISCHE CINECA VSB TECHNICAL ITAINNOVATIONS
UNIVERSITAT || || UNIVERSITY | NATIONAL SUPERCOMPUTING
WIEN OF OSTRAVA CENTER
?nl%r%r\si\grrsifcirig =

K Co-funded by the
LG Erasmus+ Programme
g of the European Union

This project has been funded with support from the European Commission.
This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use
which may be made of the information contained therein.

