
This project has been funded with support from the European Commission.

This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

Programming Basics

Sivasankar Arul, IT4Innovations

June/2021

Thread

Thread

• A thread is a single sequential flow of instructions within a program.

• A sequential code in one processor has one thread.

2

A thread
Program

C - pointers

3

Pointer

A variable that points to the storage/memory address of another variable.

• A variable of type certain type will store a value

• This variable has its address (where it is located the memory). This address can be obtained by
using ‘&’

• A pointer stores the address of the variable

• The value of the variable can be accessed using the variable or the pointer

int v = 0;

&v

int *y = &v;

v
*y

Malloc()

malloc()

• Dynamically allocates a single large block of memory

• Syntax

• Example

4

pointer = (type*) malloc(byte - size)

n = 5;
int *p;
p = (int*)malloc(n * sizeof(int));

p =

sizeof(int) = 4 bytes

20 bytes of memory

Vector Addition - C

5

EXERCISE 1 : Vector Addition using C program

Source code

FOLDER: EX1_VECTOR_ADDITION

vector_add.c

Vector Addition

6

Vector A A[0] A[1] A[2] A[3] A[4] A[N-1]

Vector B B[0] B[1] B[2] B[3] B[4] B[N-1]

Vector C C[0] C[1] C[2] C[3] C[4] C[N-1]

𝐴 + 𝐵 = 𝐶

C program for Vector Addition

C programming – Vector addition

7

The “include” tells the pre-processor to include the

content of the named header file.

#include <stdio.h>
#include <time.h>
#include <stdlib.h>

#define array_size 10000000

Define size of the array as global variable

C program for Vector Addition

8

int main(){

}

The main body of the code.

Memory Allocation

for the variables

float *a, *b, *c;

a = (float*)malloc(sizeof(float) * array_size);
b = (float*)malloc(sizeof(float) * array_size);
c = (float*)malloc(sizeof(float) * array_size);

C program for Vector Addition

9

Initializing the

variables

// Initialize array
for(int i = 0; i < array_size; i++){

a[i] = 1.0f;
b[i] = 2.0f;
}

Addition of vectors

for(int i=0; i < array_size; i++){
c[i] = a[i] + b[i];
}

C program for Vector Addition

10

Deallocation of

Memory

free(a); free(b); free(c);

clock_t t;
t = clock()

.

.

.
t = clock() – t;
double time_taken =
((double)t)/CLOCKS_PER_SEC;

Measuring time

Slurm - Running programs

11

#!/bin/bash
#SBATCH --job-name=test
#SBATCH --output=res1.txt
#SBATCH --ntasks=1

#SBATCH --time=03:00
#SBATCH --partition=gpu
#SBATCH --nodelist=gpu01

module purge
module load icc
module load CUDA

Operations
echo "Job start“
./matvec_onethread
Operations
echo "Job end"

❖ To run the compiled code “matvec_onethread”

Create the file by the name: submit.sh

Command to launch: sbatch submit.sh

The output from the file is stored in “res1.txt”

This file launches a slot for 3 minutes in the core with
gpu.

C program for Vector Addition

#include <stdio.h>

#include <time.h>

#include <stdlib.h>

#define array_size 100000000

int main(){

float *a, *b, *c;

a = (float*)malloc(sizeof(float) * array_size);

b = (float*)malloc(sizeof(float) * array_size);

c = (float*)malloc(sizeof(float) * array_size);

// Initialize array

for(int i = 0; i < array_size; i++){

a[i] = 1.0f; b[i] = 2.0f;

}

clock_t t;

t = clock();

// vector addition

for(int i = 0;i < array_size; i++){

c[i] = a[i] + b[i];}

t = clock() - t;

double time_taken = ((double)t)/CLOCKS_PER_SEC; // in

seconds

printf("fun() took %f seconds to execute \n",

time_taken);

free(a); free(b); free(c);

}

12

Serial

Code

Initializing the

variables

one

thread

Memory Allocation

for the variables

Addition of

vectors

Deallocation of

Memory

for loop

A[n-1] B[n-1] C[n-1]

A[0] B[0] C[0]

A[1] B[1] C[1]

A[2] B[2] C[2]

Heterogenous Program

13

int main(){
float *a, *b, *out, *d_a, *d_b, *d_out;

// Allocate host memory
a = (float*)malloc(sizeof(float) * array_size);
b = (float*)malloc(sizeof(float) * array_size);
out = (float*)malloc(sizeof(float) * array_size);

// Initialize array
for(int i = 0; i < array_size; i++){

a[i] = 1.0f; b[i] = 2.0f;}

// Allocate device memory
cudaMalloc((void**)&d_a, sizeof(float)*array_size);
cudaMalloc((void**)&d_b, sizeof(float)*array_size);
cudaMalloc((void**)&d_out, sizeof(float)*array_size);

// Transfer data from host to device memory
cudaMemcpy(d_a, a, sizeof(float)*array_size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, sizeof(float)*array_size, cudaMemcpyHostToDevice);

int block_size = 256;
int grid_size = (array_size + block_size) / block_size;
// Vector addition
vector_add<<<grid_size, block_size>>>(d_out, d_a, d_b, array_size);

// Transfer data from device to host memory
cudaMemcpy(out, d_out, sizeof(float)*array_size, cudaMemcpyDeviceToHost);

// Deallocate device memory
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_out);

// Deallocate host memory
free(a);
free(b);
free(out);

}

Serial

Code

Parallel

Code

Serial

Code

Deallocation of

Memory

Initializing the

variables

Memory Allocation

for the variables

A[n-1]

B[n-1]

C[n-1]

A[0]

B[0]

C[0]

A[1]

B[1]

C[1]

A[2]

B[2]

C[2]

n

thread

one

thread

one

thread

Heterogenous Program

14

Deallocation of

Memory

Initializing the

variables
Memory Allocation for

the variables in host

A[n-1]

B[n-1]

C[n-1]

A[0]

B[0]

C[0]

A[1]

B[1]

C[1]

A[2]

B[2]

C[2]

n

thread

one

thread

one

thread

Memory Allocation for

the variables in device

Data transfer from

host to device

Data transfer from

device to host

Computation

Serial code

in host

Host – CPU, Device - GPU

Serial code

in host

Parallel Code

in device

GPU Architecture

15

KERNEL

Block

Th
re

ad

BLOCK 0 BLOCK 2BLOCK 1 Grid

Grid

0 1 2 43 0 1 2 43 0 1 2 43

➢ A kernel is executed as a grid

➢ A grid is broken into blocks

➢ Each block is broken into threads

GPU Architecture

16

GPU –

Collection of Streaming

Multiprocessor

Memory

cores

Streaming Multiprocessor

– collection of cores

GPU device

CONTROL

CONTROL

CONTROL

CONTROL

CONTROL

GPU Architecture

17

A thread is executed in a core

Th
re

ad

One block is executed in one Streaming Multiprocessor.

The three blocks are executed in parallel

A kernel is executed in a CUDA-enabled GPU

➢ Depending on the number of SM, blocks are distributed

and executed in parallel

➢ More SM a device has, faster is the execution

KERNEL

Block

Th
re

ad

KERNEL

BLOCK 0 BLOCK 2BLOCK 1 Grid

Grid

0 1 2 43 0 1 2 43 0 1 2 43

BLOCK 0

BLOCK 2

BLOCK 1

Vector Addition - GPU

Vector Addition using GPU

• In one core as one thread

• In one streaming multiprocessor as one block

• In the entire GPU device as multiple blocks

18

Vector Addition – One core

19

In one core as one thread

for loop

A[n-1] B[n-1] C[n-1]

A[0] B[0] C[0]

A[1] B[1] C[1]

A[2] B[2] C[2]

CUDA-enabled GPU

__global__ void vector_add(float *out, float *a, float *b, int
n){
for(int i = 0; i < n; i++){

out[i] = a[i] + b[i];}
}

Vector Addition – One SM

20

A streaming multiprocessor has a number of cores

When the kernel is called, the number of blocks and the number of

threads in each block is specified

vector_add <<<1,256>>> (d_out, d_a, d_b, N)

256 threads

CUDA-enabled GPU

__global__ void vector_add(float *out, float *a, float *b, int n){
int index = threadIdx.x;
int stride = blockDim.x;

for(int i=index; i<n; i+=stride){
out[i] = a[i] + b[i];}

}

Vector Addition – One SM

• Each thread performs the vector addition on a
certain chunk of the array.

• Strategy for distributing the array between the
threads

• Requisite

1. The threads should not communicate
with each other.

2. The array should be equally split between
the threads.

• Constraint

1. Each thread will run the same function.

21

• The array is in the device memory.
• It is available for all the threads.

What’s available?
Each thread can have its local variables.
We define two local variables:
1. It has an unique id : threadIdx.x
2. The number of threads : blockDim.x

Vector Addition – One SM

22

thread 0

Local variables for this thread:
index = threadIdx.x = 0
stride = blockDim.x = 256

For loop
first loop:

i = index = 0
out[i=0] = a[i=0] + b[i=0]

second loop:
i = i + stride = 256
out[i=256] = a[i=256] + b[i=256]

third loop:
i = i + stride = 512
out[i=512] = a[i=512] + b[i = 512]

until: i < n

Local variables for this thread:
index = threadIdx.x = 1
stride = blockDim.x = 256

For loop
first loop:

i = index = 1
out[i=1] = a[i=1] + b[i=1]

second loop:
i = i + stride = 257
out[i=257] = a[i=257] + b[i=257]

third loop:
i = i + stride = 513
out[i=513] = a[i=513] + b[i = 513]

until: i < n

__global__ void vector_add(float *out, float *a, float *b, int n){
int index = threadIdx.x;
int stride = blockDim.x;

for(int i=index; i<n; i+=stride){
out[i] = a[i] + b[i];}

}

thread 1

Vector Addition – One SM

23

A[255]

B[255]

C[255]

A[0]

B[0]

C[0]

A[1]

B[1]

C[1]

A[2]

B[2]

C[2]

1st loop

2550 1 2

2nd loop

threadIdx.x 2550 1 2

A[256]

B[256]

C[256]

2550 1 2i 511256 257 258i

A[257]

B[257]

C[257]

A[258]

B[258]

C[258]

A[511]

B[511]

C[511]

__global__ void vector_add(float *out, float *a, float *b, int n){
int index = threadIdx.x;
int stride = blockDim.x;

for(int i = index; i < n; i+ = stride){
out[i] = a[i] + b[i];}

}

Vector Addition – Multiple SMs

24

CUDA-enabled GPU

Many streaming multiprocessors can be used

• Each thread accesses one element in the array. We predefine the number of threads in a block.
• The number of blocks is calculated based on the array size and the number of threads in a block.

number of blocks n = ൗarray size
number of threads in each block

Vector Addition – Multiple SMs

25

When the kernel is called, the number of blocks and the number of threads in each block is specified:

Each thread in a block has an unique id starting from 0.
Each block has an unique id starting from 0.

vector_add <<<n,256>>> (d_out, d_a, d_b, N)

The above command instantiates n blocks with 256 threads in each block.

thread

1
thread

0
thread

2
thread

255

thread

1
thread

0
thread

2
thread

255
thread

1
thread

0
thread

2
thread

255

BLOCK 0

BLOCK 1

BLOCK 2

Vector Addition – Multiple SMs

26

2552540 1 2

Block 0 Block 1

i =
blockIdx.x * blockDim.x +

threadIdx.x
=

0 * 256 + threadIdx.x
C[i] = A[i] + B[i]

2552540 1 2

i =
blockIdx.x * blockDim.x +

threadIdx.x
=

1 * 256 + threadIdx.x
C[i] = A[i] + B[i]

2552540 1 2 511510256 257 258

blockIdx.x

threadIdx.x

i

0 1

Block n

255

N

Each thread can have its local variables. We define three local variables:
1. The id of the thread : threadIdx.x
2. The number of threads in the block : blockDim.x = 256
3. The block to which the thread belongs to : blockIdx.x

Vector Addition – Multiple SMs

27

The blocks are distributed among the streaming

multiprocessors

BLOCK 0 BLOCK 1

BLOCK 2

BLOCK 5BLOCK 4

BLOCK 3

BLOCK 6 BLOCK 7

BLOCK 8 BLOCK 9

BLOCK 10 BLOCK 11

When 3 streaming

multiprocessors are available

When 6 streaming

multiprocessors are available

BLOCK 0 BLOCK 1 BLOCK 2

BLOCK 3 BLOCK 4 BLOCK 5

BLOCK 6 BLOCK 7 BLOCK 8

BLOCK 9 BLOCK 10 BLOCK 11

BLOCK 0 BLOCK 1 BLOCK 2

BLOCK 3 BLOCK 4 BLOCK 5

BLOCK 6 BLOCK 7 BLOCK 8

BLOCK 9 BLOCK 10 BLOCK 11

GPU Programming Syntax

• Functions that run on GPU are usually enclosed in “<<< >>>”.

• The file has extension “.cu”.

• It is complied using nvcc compiler driver.

28

Heterogenous Program

29

Memory Allocation in

Host
Memory Allocation

in Device

Data transfer from Host

to Device

Computation in Device
Data transfer from

Device to Host
Deallocation of

Memory

GPU Programming Functions

30

The CPU manages both device and host memory

• Allocate the memory in the CPU
(type*) malloc(byte – size)

• Allocate the memory in the GPU

cudaMalloc((void**) pointer,malloc(byte - size)

• Data is transferred from host memory to device memory
cudaMemcpy(device_variable, host_variable, size of variable, CudaMemcpyHosttoDevice)

• After the kernel execution and data is transferred from device to host memory
cudaMemcpy(host_variable, device_variable, size of variable, CudaMemcpyDevicetoHost)

• The memory in GPU is deallocated
cudaFree(pointer)

• Finally, the memory in CPU is deallocated
free(pointer)

GPU Programming Functions

31

EXERCISE 1 : Vector Addition using GPU program

Source code

FOLDER: EX1_VECTOR_ADDITION

Vector Addition – GPU program

32

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <cuda.h>
#include <sys/time.h>

The “include” statement to tell the pre-processor to include the

content of the named header file.

#define array_size 268435456

Define size of the array as global variable

Host – CPU, Device - GPU

Vector Addition – GPU program

33

Memory Allocation in

Host and initialization

of data

float *a, *b, *out;
float *d_a, *d_b, *d_out;

a = (float *)malloc(sizeof(float) * array_size);
b = (float *)malloc(sizeof(float) * array_size);
out = (float *)malloc(sizeof(float) * array_size);

// Initialize array
for(int i = 0; i < array_size ; i++){

a[i] = 1.0f;
b[i] = 2.0f;
}

Host – CPU, Device - GPU

Vector Addition – GPU program

34

Memory Allocation in

Device

// Allocate device memory for variables
cudaMalloc((void**)&d_a, sizeof(float) * array_size);
cudaMalloc((void**)&d_b, sizeof(float) * array_size);
cudaMalloc((void**)&d_out, sizeof(float) * array_size);

Host – CPU, Device - GPU

Vector Addition – GPU program

35

Data transfer from

Host to Device

// Transfer data from host to device memory
cudaMemcpy(d_a, a, sizeof(float) * array_size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, sizeof(float) * array_size, cudaMemcpyHostToDevice);

Host – CPU, Device - GPU

Vector Addition – GPU program

36

Data transfer from
Device to Host

cudaMemcpy(out, d_out, sizeof(float) * array_size, cudaMemcpyDeviceToHost);

Deallocation of
Memory

// Deallocate device memory
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_out);

// Deallocate host memory
free(a);
free(b);
free(out);

Host – CPU, Device - GPU

Vector Addition – GPU program

37

Computation in
Device

Host – CPU, Device - GPU

// Main function
int block_size = 1;
int grid_size = 1;
vector_add<<<grid_size,block_size>>>(d_out, d_a, d_b, N);
cudaDeviceSynchronize();

__global__ void vector_add(float *out, float *a, float *b, int n){
for(int i = 0; i < n; i++){

out[i] = a[i] + b[i];}
}

Kernel

One thread

Vector Addition – GPU program

38

Computation in
Device

Host – CPU, Device - GPU

Kernel

One block

__global__ void vector_add(float *out, float *a, float *b, int n){
int index = threadIdx.x;
int stride = blockDim.x;

for(int i = index; i < n; i += stride){
out[i] = a[i] + b[i];}

}

// Main function
int block_size = 256;
int grid_size = 1;
vector_add<<<grid_size,block_size>>>(d_out, d_a, d_b, N);
cudaDeviceSynchronize();

Vector Addition – GPU program

39

Computation in
Device

Host – CPU, Device - GPU
Multiple block

__global__ void vector_add(float *out, float *a, float *b, int n){
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < n){

out[index] = a[index] + b[index];}
}

// Main function
int block_size = 256;
int grid_size = (N + block_size) / block_size;
vector_add<<<grid_size,block_size>>>(d_out, d_a, d_b, N);
cudaDeviceSynchronize();

Remark : We ensure the tail of the array is processed by launching one extra block.

1st block 2nd block n-1thblock nth block

vector 𝐴

Slurm - Running programs

40

#!/bin/bash
#SBATCH --job-name=test
#SBATCH --output=res1.txt
#SBATCH --ntasks=1

#SBATCH --time=03:00
#SBATCH --partition=gpu
#SBATCH --nodelist=gpu01

module purge
module load icc
module load CUDA

Operations
echo "Job start“
./matvec_onethread
Operations
echo "Job end"

❖ To run the compiled code “matvec_onethread”

Create the file by the name: submit.sh

Command to launch: sbatch submit.sh

The output from the file is stored in “res1.txt”

This file launches a slot for 3 minutes in the core with
gpu.

Time comparison

41

Kernel execution time

74.08

0.564 0.020
0

10

20

30

40

50

60

70

80

One thread One block n block

TI
M

E
IN

 S
EC

O
N

D
S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

One thread One block n block

TI
M

E
IN

 S
EC

O
N

D
S

Host to Device Device to Host

Time for data transfer

Code Profiling

42

1 block with 256 threads

Code profiling – nvprof ./####

1 thread

N blocks with all threads

Code Profiling

43

Expensive step is the memory transfer

Time taken as percentage

Host to Device

Device to Host

Vector Addition

GPU computation

• For a task involving single computation on a data,

• When a GPU is used most of the time will be spent on copying data
between CPU and GPU memory.

• One way to circumvent this problem, if the task allows it, then:

❑Perform simultaneous data transfer and computation

➢Overlap computation and data transfer

• GPU is ideal when many computations needs to be done for a given data.

44

This project has been funded with support from the European Commission.

This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which

may be made of the information contained therein.

Thank you for your attention!

http://sctrain.eu/

http://sctrain.eu/

