SUPERCOMPUTING

SCtrain e
PARTNERSHIP

Programming Basics

Sivasankar Arul, IT4lnnovations

June/2021

Univerza v Ljubljani

|-_L ‘!‘.“ !
HRRH
el

]|

[

TECHNISCHE CINECA VSB TECHNICAL ITAINNOVATIONS
UNIVERSITAT || || UNIVERSITY | NATIONAL SUPERCOMPUTING
WIEN OF OSTRAVA | CENTER

consorzipo
interuniversitario

KEx Co-funded by the
L Erasmus+ Programme
Xax of the European Union

This project has been funded with support from the European Commission.
This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which
may be made of the information contained therein.

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Thread SCtrain

Thread
« Athread is a single sequential flow of instructions within a program.
« A sequential code in one processor has one thread.

~

> Program

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

C - pointers SCtram

Pointer

A variable that points to the storage/memory address of another variable.
« Avariable of type certain type will store a value

int v = 9;

» This variable has its address (where it is located the memory). This address can be obtained by
using ‘&

&v

» A pointer stores the address of the variable

int *y = &v;

* The value of the variable can be accessed using the variable or the pointer

V
*y

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Malloc() SCtrain

malloc()
« Dynamically allocates a single large block of memory
¢ Syntax
pointer = (type*) malloc(byte - size)
« Example
n = 5;
int *p;

p = (int*)malloc(n * sizeof(int));

sizeof(int) = 4 bytes

- - | I I I

20 bytes of memory

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition - C SCtrain

EXERCISE 1 : Vector Addition using C program
Source code
FOLDER: EX1 VECTOR_ADDITION

vector_add.c

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition SCtramn

A+B=C

Vectors [N N I I T A
op & op & op
vector [N Em - EE

3-8

Vector C

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

C program for Vector Addition S(trgin

C programming — Vector addition

#include <stdio.h>
#include <time.h>
#tinclude <stdlib.h>

The “include” tells the pre-processor to include the
content of the named header file.

4

#define array_size 10000000

Define size of the array as global variable

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

C program for Vector Addition S(trgin

int main(){

}
The main body of the code.

4

float *a, *b, *c;

c o
nm n 1

(float*)malloc(sizeof(float) * array size);
(float*)malloc(sizeof(float) * array size);
(float*)malloc(sizeof(float) * array size);

Memory Allocation
for the variables

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

C program for Vector Addition S trgin

// Initialize array
for(int i = 9; i < array_size; i++){

a[i] = 1.ef;
b[i] = 2.0f;
}

[Initializing the 1
variables

4

for(int i=0; i < array_size; i++){
c[i] = a[i] + b[i];
}

[Addition of vectors }

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

C program for Vector Addition S(trgin

free(a); free(b); free(c);
[Deallocation of]

Memory

clock t t;
t = clock()

t = clock() - t;
double time taken =
((double)t)/CLOCKS PER_SEC;

(Measuring time 1

0

Slurm - Running programs SCtram

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

#!/bin/bash

#SBATCH --job-name=test
#SBATCH --output=resl.txt
#SBATCH --ntasks=1

#SBATCH --time=03:00
#SBATCH --partition=gpu
#SBATCH --nodelist=gpu01

module purge
module load icc
module load CUDA

Operations

echo "Job start”
./matvec_onethread
Operations

echo "Job end"

+* To run the compiled code “matvec_onethread”
Create the file by the name: submit.sh

Command to launch: sbatch submit.sh

The output from the file is stored in “res1.txt”

This file launches a slot for 3 minutes in the core with
gpu.

11

C program for Vector Addition SCtrain SOl Uit

PARTNERSHIP

#include <stdio.h> i\\
#include <time.h>

#tinclude <stdlib.h>

#tdefine array_size 100000000

one
l — " thread

int main(){

float *a, *b, *c;

a = (float*)malloc(sizeof(float) * array_size);
= (float*)malloc(sizeof(float) * array_size);
¢ = (float*)malloc(sizeof(float) * array_size);

// Initialize array

for(int i = @; i < array_size; i++){ .
a[i] = 1.0f; b[i] = 2.0f; Serial

' Code

clock_t t;

t = clock();

// vector addition
for(int i = 0;1i < array_size; i++){
c[i] = a[i] + b[i];}

t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // in

seconds
printf("fun() took %f seconds to execute \n",
time_taken);

free(a); free(b); free(c); —//

12

Heterogenous Program

SUPERCOMPUTING

a | n KNOWLEDGE
PARTNERSHIP

int main(){

float *a, *b, *out, *d_a, *d_b, *d_out;

// Allocate host memory

a = (float*)malloc(sizeof(float) * array_size);
b = (float*)malloc(sizeof(float) * array_size);
out = (float*)malloc(sizeof(float) * array_size);

// Initialize array
for(int 1 = @; i < array_size; i++){
a[i] = 1.ef; b[i] = 2.0f;}

// Allocate device memory

cudaMalloc((void**)&d_a, sizeof(float)*array_size);
cudaMalloc((void**)&d_b, sizeof(float)*array_size);
cudaMalloc((void**)&d_out, sizeof(float)*array_size);

// Transfer data from host to device memory
cudaMemcpy(d_a, a, sizeof(float)*array_size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, sizeof(float)*array_size, cudaMemcpyHostToDevice);

int block_size = 256;

int grid_size = (array_size + block_size) / block_size;

// Vector addition

vector_add<<<grid_size, block_size>>>(d_out, d_a, d_b, array_size);

// Transfer data from device to host memory

cudaMemcpy(out, d_out, sizeof(float)*array_size, cudaMemcpyDeviceToHost);

// Deallocate device memory
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_out);

// Deallocate host memory
free(a);

free(b);

free(out);

thread

Serial
Code

ety
———____ one
e

3 3 3 3

Parallel

n
Code

thread

Serial
Code

one
thread

13

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Heterogenous Program SCtrain

e g

‘\ one

- _ o
- Serial code

In host

Host — CPU, Device - GPU

§ Computation

3

) Parallel Code
thread m““ W In device

one Serial code
thread In host

C[o]

14

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

GPU Architecture SCtramn

{ KERNEL J
[- - -J Grid » Akernel is executed as a grid

» Agrid is broken into blocks
> Each block is broken into threads

Grid

k Block

15

GPU Architecture

SCtrain

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

GPU device

controL |
CONTROL

CONTROL

CONTROL

CONTROL

CHNlEE

]

e

Memory

3/

DOEED UOEED DOEED

~ (IID 0D OID

nnfunfing]

cores

Streaming Multiprocessor
— collection of cores

GPU —
Collection of Streaming
Multiprocessor

16

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

GPU Architecture SCtramn

A kernel is executed in a CUDA-enabled GPU

e | e ODODED

l One block is executed in one Streaming Multiprocessor.
The three blocks are executed in parallel

- — .

Es& - ([0
B D

» Depending on the number of SM, blocks are distributed
and executed in parallel
» More SM a device has, faster is the execution

@ a

Grid , ,
A thread is executed in a core

m [

Thread

k Block

17

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition - GPU SCtrain

Vector Addition using GPU

* |n one core as one thread
* |n one streaming multiprocessor as one block
* In the entire GPU device as multiple blocks

18

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — One core SCtrain

CUDA-enabled GPU

[H — || In one core as one thread

B[O]

B[1] __global void vector add(float *out, float *a, float *b, int
n){
for(int i = 0; i < n; i++){

B[2] out[i] = a[i] + b[i];}
}

19

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — One SM SCtrain

CUDA-enabled GPU A streaming multiprocessor has a number of cores

(I (TID () (ITITRET

When the kernel is called, the number of blocks and the number of
threads in each block is specified

v

vector add <<<1,256>>> (d _out, d_a, d b, N)

256 threads

(A \ __global void vector_add(float *out, float *a, float *b, int n){

int index = threadIdx.x;
int stride = blockDim.x;

for(int i=index; i<n; i+=stride){
out[i] = a[i] + b[i];}
}

20

Vector Addition — One SM

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

SCtrain

e Each thread performs the vector addition on a
certain chunk of the array.

» Strategy for distributing the array between the
threads

* Requisite
1. The threads should not communicate
with each other.

2. The array should be equally split between
the threads.

 Constraint
1. Each thread will run the same function.

 The array is in the device memory.
e [tis available for all the threads.

What's available?

Each thread can have its local variables.

We define two local variables:

1. It has an unique id : threadldx.x
2. The number of threads : blockDim.x

21

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — One SM

SCtrain

__global
int index
int stride

void vector_add(float *out,
threadIdx.x;
blockDim.x;

float *a, float *b, int n){

thread @ for(int i=index; i<n; i+=stride){
1 out[i] = a[i] + b[i];} thread 1

} }

Local variables for this thread:

Local variables for this thread:

index = threadIdx.x = 0 index = threadIdx.x =1
stride = blockDim.x = 256 stride = blockDim.x = 256
For loop For loop
first loop: first loop:
i = index = 0 i = index =1
out[i=0] = a[i=0] + b[i=0] out[i=1] = a[i=1] + b[i=1]
second loop: second loop:
i =1+ stride = 256 i = i + stride = 257
out[i=256] = a[1=256] + b[i=256] out[i=257] = a[i=257] + b[i=257]
third loop: third loop:
i =1+ stride = 512 i =1 + stride = 513
out[i=512] = a[i=512] + b[1 = 512] out[i=513] = a[i=513] + b[i = 513]
until: i < n until: 1 < n

22

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — One SM SCtrain

15t loop 2" loop
0 1 2 255 threadIdx.x O 1 2 255
i 0 1 2 255 i 256 257 258 511

A[0] Al1] Al2] A[255]

A[256] A[257] A[258] A[511]

B[O] B[1] B[2] B[255]

B[256] B[257] B[258] B[511]

c[o] Cl1] c[2] C[255] C[257] C[258]

__global void vector_add(float *out, float *a, float *b, int n){
int index threadIdx.x;
int stride blockDim.x;

for(int i = index; i < n; i+ = stride){
out[i] = a[i] + b[i];}
}

23

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — Multiple SMs S(Ctrain

CUDA-enabled GPU

[m m m Many streaming multiprocessors can be used

2222 2222 2222

e Each thread accesses one element in the array. We predefine the number of threads in a block.
 The number of blocks is calculated based on the array size and the number of threads in a block.

number of blocks n = 2114 51ze/

number of threads in each block

24

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — Multiple SMs S(Ctrain

When the kernel is called, the number of blocks and the number of threads in each block is specified:

vector _add <<<n,256>>> (d_out, d _a, d b, N)

The above command instantiates n blocks with 256 threads in each block.

Each thread in a block has an unique id starting from 0.
Each block has an unique id starting from 0.

thread thread thread L thread - thread thread thread L thread
0 1 2 255 0 1 2 255
l l l l thread thread thread . thread 1 1 l l
0 1 2 255

} } } ;

25

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — Multiple SMs S(Ctrgin

Each thread can have its local variables. We define three local variables:
1. Theid of the thread : threadIdx.x

2. The number of threads in the block :blockDim.x = 256
3. The block to which the thread belongs to :blockIdx.x

blockIdx.x 0 1
threadIdx.x 0 1 2 254 255 0 1 2 254 255 255

| | | }

26

Vector Addition — Multiple SMs S(Ctrgin

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

The blocks are distributed among the streaming
multiprocessors

When 3 streaming
multiprocessors are available

When 6 streaming
multiprocessors are available

\l

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

GPU Programming Syntax SCtrain

* Functions that run on GPU are usually enclosed in “<<< >>>7
 The file has extension “.cu”.
* It is complied using nvcc compiler driver.

28

SUPERCOMPUTING

Heterogenous Program rain o

PARTNERSHIP

int main(){
float *a, *b, *out;
Float *d_a, *d_b, *d_out;

a = (float*)mallo float) * N); ate de » memare a Transfer data

b = aat*) loat) N); id**)&d_a, (at)*N); cudaMemcpy(d_a,a, sizeof(float)*N, cudaMemcpyHostToDevice);

out = (float*)malloc(sizeof(float) = N); id**)&d_b,sizeof(Float)*N); cudaMemcpy (d_b,b, sizeof(float)*N, cudaMemcpyHostToDevice);
id**)&d_out,sizeof(float)*N);

(int 1 = 8; 1 < N; i++){
afi] = 1
b[i] = 2

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_out); Main ti

int block_size = 256;

ize;

cate host memors cudaMemcpy (out, d_out, sizeof(float)*N, cudaMemcpyDeviceToHost); int grid_size = (N+block_size)/block_
free(a); vector_add grid_size,block_size (d_out, d_a, d_b, N});
free(b);

freefout);

Computation in Device

29

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

GPU Programming Functions SCtrain

The CPU manages both device and host memory

» Allocate the memory in the CPU
(type*) malloc(byte — size)

Allocate the memory in the GPU
cudaMalloc((void**) pointer,malloc(byte - size)

Data is transferred from host memory to device memory
cudaMemcpy(device variable, host_variable, size of variable, CudaMemcpyHosttoDevice)

After the kernel execution and data is transferred from device to host memory
cudaMemcpy(host_variable, device variable, size of variable, CudaMemcpyDevicetoHost)

The memory in GPU is deallocated
cudaFree(pointer)

Finally, the memory in CPU is deallocated
free(pointer)

30

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

GPU Programming Functions SCtrain

EXERCISE 1 : Vector Addition using GPU program

Source code
FOLDER: EX1 VECTOR ADDITION

31

Vector Addition — GPU program S(trgin

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <cuda.h>
#include <sys/time.h>

Host — CPU, Device - GPU

The “include” statement to tell the pre-processor to include the

content of the named header file.

4

#define array size 268435456

Define size of the array as global variable

32

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — GPU program S(trgin

Host — CPU, Device - GPU

float *a, *b, *out;
float *d_a, *d b, *d out;

a
b
out

(float *)malloc(sizeof(float) * array size);
(float *)malloc(sizeof(float) * array size);
(float *)malloc(sizeof(float) * array size);

// Initialize array
for(int 1 = @; i < array_size ; i++){

al[i] = 1.0f;
b[i] = 2.0f;
}

Memory Allocation in
Host and initialization
of data

33

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — GPU program S(trgin

Host — CPU, Device - GPU

// Allocate device memory for variables

cudaMalloc((void**)&d a, sizeof(float) * array_size);
cudaMalloc((void**)&d b, sizeof(float) * array_size);
cudaMalloc((void**)&d out, sizeof(float) * array size);

Memory Allocation in
Device

34

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — GPU program S(trgin

Host — CPU, Device - GPU

// Transfer data from host to device memory
cudaMemcpy(d_a, a, sizeof(float) * array size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, sizeof(float) * array size, cudaMemcpyHostToDevice);

Data transfer from
Host to Device

35

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — GPU program S(trgin

cudaMemcpy(out, d out, sizeof(float) * array _size, cudaMemcpyDeviceToHost);

Device to Host

// Deallocate device memory
cudaFree(d_a);
cudaFree(d _b);
cudaFree(d_out);

[Data transfer from } Host — CPU, Device - GPU

// Deallocate host memory
free(a);

free(b);

free(out);

Deallocation of
Memory

36

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — GPU program S(trgin

Host — CPU, Device - GPU
One thread o 0S , Device
Computation in
Device

Kernel

__global void vector add(float *out, float *a, float *b, int n){
for(int 1 = 0; i < n; i++){
out[i] = a[i] + b[i];}

}

// Main function

int block size = 1;

int grid size = 1;
vector_add<<<grid size,block size>>>(d out, d a, d b, N);
cudaDeviceSynchronize();

37

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — GPU program S(trgin

Host — CPU, Device - GPU
One block _— 0S , Device
Computation in
Device

Kernel

__global void vector_add(float *out, float *a, float *b, int n){
int index = threadIdx.x;
int stride = blockDim.x;

for(int 1 = index; 1 < n; i += stride){
out[i] = a[i] + b[i];}

}

// Main function

int block size = 256;

int grid_size = 1;

vector_ add<<<grid size,block size>>>(d out, d a, d b, N);
cudaDeviceSynchronize();

38

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Vector Addition — GPU program S(trgin

Computation in Host — CPU, Device - GPU
Device

Multiple block

__global void vector_add(float *out, float *a, float *b, int n){
int index = blockIdx.x * blockDim.x + threadIdx.Xx;
if (index < n){

out[index] = a[index] + b[index];}

}

// Main function

int block _size = 256;

int grid size = (N + block size) / block size;
vector_add<<<grid size,block size>>>(d out, d_a, d_b, N);
cudaDeviceSynchronize();

Remark : We ensure the tail of the array is processed by launching one extra block.

vectorA LL I 1 [1 {1 [| oeee | | 1] 1]
|

39

Slurm - Running programs SCtram

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

#!/bin/bash

#SBATCH --job-name=test
#SBATCH --output=resl.txt
#SBATCH --ntasks=1

#SBATCH --time=03:00
#SBATCH --partition=gpu
#SBATCH --nodelist=gpu01

module purge
module load icc
module load CUDA

Operations

echo "Job start”
./matvec_onethread
Operations

echo "Job end"

+* To run the compiled code “matvec_onethread”
Create the file by the name: submit.sh

Command to launch: sbatch submit.sh

The output from the file is stored in “res1.txt”

This file launches a slot for 3 minutes in the core with
gpu.

40

Time comparison

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

SCtrain

TIME IN SECONDS

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Time for data transfer

One thread

M Host to Device

One block

M Device to Host

n block

TIME IN SECONDS

80

70

60

50

40

30

20

10

Kernel execution time

74.08

0.564 0.020

One thread One block n block

41

Code Profiling

SCtrain

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Code profiling — nvprof ./###

1 thread

==8304== Profiling application:
==83P4== Profiling result:

Type
GPU activities:

Time(%)
99.45%
0.30%
0.25%

1 block with 256 threads

==8354== Profiling application:
==8354== Profiling result:

Type
GPU activities:

Time(%)
46.94%
30.61%
22.45%

N blocks with all threads

==11178== Profiling application:
==11178== Profiling result:

Type
GPU activities:

Time(%)
L7.10%
39.65%

3.25%

Time
111.238s
335.78ms
283.87ms

Time
695.40ms
453.48ms
332.56ms

Time
410.44ms
284.97ms
23.336ms

Calls

1
1
2

Calls
1
2
1

Calls

1
2
1

. /vector_add onethread

Avg
111.230s
335.78ms
141.93ms

. fvector_add oneblock

Avg
695.40ms
226.74ms
332.56ms

. fvector_add nblock

Avg
410.44ms
142 .49ms
23.336ms

Min
111.230s
335.78ms
I A

Min
695.40ms
226.60ms
332.56ms

Min
410.44ms
142.12ms
23.336ms

Max
111.236s
335.78ms
142.35ms

Max
695.40ms
226.87ms
332.56ms

Max
410.44ms
142 .85ms
23.336ms

Name

vector_add(float*, float¥*,

[CUDA memcpy DtoH]
[CUDA memcpy HtoD]

Name

vector_ add(float*,
[CUDA memcpy HtoD]
[CUDA memcpy DtoH]

Name
[CUDA memcpy DtoH]
[CUDA memcpy HtoD]

vector add(float*, float*®

float#*,

float*, int)

float*, int)

float*

42

SUPERCOMPUTING

Code Profiling SCtrain s

==11178== Profiling application: .fvector_ add nblock
==11178== Profiling result:
Type Time(%) Time Calls Avg Min Max MName

GPU activities: 57.10% 410.44ms 1 410.44ms 410.44ms 410.44ms [CUDA memcpy DtoH]
39.65% 284.97ms 2 142.49ms 142.12ms 142.85ms [CUDA memcpy HtoD]
3.25% 23.336ms 1 23.336ms 23.336ms 23.336ms vector add(float*, float*, float*

Expensive step is the memory transfer

Time taken as percentage

Host to Device
Device to Host

m Vector Addition

43

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

GPU computation SCtrain

 For a task involving single computation on a data,

 When a GPU is used most of the time will be spent on copying data
between CPU and GPU memory.

* One way to circumvent this problem, if the task allows it, then:
dPerform simultaneous data transfer and computation
»Overlap computation and data transfer

« GPU is ideal when many computations needs to be done for a given data.

44

SUPERCOMPUTING

SCtrain e
PARTNERSHIP

Thank you for your attention!

http://sctrain.eu/

Univerza v Ljubljani

TECHNISCHE CINECA VSB TECHNICAL ITAINNOVATIONS
UNIVERSITAT | | I | UNIVERSITY | NATIONAL SUPERCOMPUTING
WIEN OF OSTRAVA | CENTER
inferuniversitario
RN Co-funded by the This project has been funded with support from the European Commission.
* * Erasmus+ Programme This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which
Fag of the European Union may be made of the information contained therein.

http://sctrain.eu/

