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Methods for solution of BVP S train

Methods for solution of Boundary Value Problem (BVP):

AFinite Difference Method (FDM)

AFinite Element Method (FEM) 3
ABoundary Element Method (BEM "
AFinite Volume Method (FVM) :
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AIDEA: approximation of derivatives in
governing equation and boundary
conditions at points (grid)

AApproximation is derived based on the_
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Finite Difference Method SCtram
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Finite Difference Method SCtram
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Finite Difference Method SCtram

ASystem of equations: 0
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Finite Difference Method SCtram

AStationary heat transfer in 2D
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AIDEA: integral based approach
AStarting point of derivation is Weak Integral Form of governing equatiot
ASolution domain is discretized into sdbmains, called finite elements (FI

Aln

AA
ty

the FE suldomain we approximate unknown quantities

DVANTAGE: simpleuse for complex geometrical domains, useful for
nes of physical problems

AD

SADVANTAGEamputationally intensive method
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FEM i Implementation steps SCtrain

ADerivation ofWeak Integral Form of Governing Equation
AApproximation of Solution Variabtaser Finite Element Domain
ADerivation of Finite Element Matrix Equation

AMeshing &Writing FE Matrix Equation for each FE —_—
AThe Assembly Proce@Slobal Finite Element Matrix Equation)——
AWriting Boundary Conditions [t ] 0
ASolutionof System of Equations

[K]. (u} = (F}

[Kglob]- {uglob} = {Fglob}
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FEM i Implementation steps SCtrain

ADerivation ofWeak Integral Form of Governing Equation
AApproximation of Solution Variabtaser Finite Element Domain
ADerivation of Finite Element Matrix Equation

AMeshing &Writing FE Matrix Equation for each FE —_—
AThe Assembly Proce@Slobal Finite Element Matrix Equation)——
AWriting Boundary Conditions [t ] 0
ASolutionof System of Equations

[K]. (u} = (F}

[Kglob]- {uglob} = {Fglob}
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FEM i Weak Form SCtrain

Derivation ofWeak Integral Form of Governifmgjuation
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FEM i Implementation steps SCtrain

ADerivation ofWeak Integral Form of Governing Equation
AApproximation of Solution Variabl®ver Finite Element Domain
ADerivation of Finite Element Matrix Equation

AMeshing &Writing FE Matrix Equation for each FE —_—
AThe Assembly Proce@Slobal Finite Element Matrix Equation)——
AWriting Boundary Conditions [t ] 0
ASolutionof System of Equations

[K]. (u} = (F}

[Kglob]- {uglob} = {Fglob}
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FEM i Implementation steps SCtrain

ADerivation ofWeak Integral Form of Governing Equation
AApproximation of Solution Variabtaser Finite Element Domain
ADerivation of Finite Element Matrix Equation

AMeshing &Writing FE Matrix Equation for each FE —_—
AThe Assembly Proce@Slobal Finite Element Matrix Equation)——
AWriting Boundary Conditions [t ] 0
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FEM 1 Matrix Equation
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FE Matrix Equation
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Finite Element Matrix Equation
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ADerivation ofWeak Integral Form of Governing Equation

AApproximation of Solution Variabtaser Finite Element Domain

ADerivation of Finite Element Matrix Equation
AMeshing &Writing FE Matrix Equation for each FE

AThe Assembly Proceg¢6lobal Finite Element Matrix Equation)™,

AWriting Boundary Conditions
ASolutionof System of Equations

Governing
8 Diff. Eq.

Jg -+ =0

[K]. (u} = (F}

[Kglob]- {uglob} = {Fglob}
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FEM i Meshing SCtram

Meshing& Writing FE Matrix Equation for each FE

EASL - lgu,0_¢ NOO nh 6l
€ UI U'_IU
h &1 Lhiuy | Ny 2 il

EAel 1zeu2u é- N%0 n,held

U_l U'_l U

21



SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

FEM i The Assembly Process SCtrain

Expansion to all degrees of freedom
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FEM i The Assembly Process SCtrain

Adding equations together
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FEM i The Assembly Process SCtrain

Adding equations together
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FEM i Boundary conditions  S(Ctrain

Applying boundary conditions
81 1 Ogiu & - NO G

J— a1 1
—2%1 =I+1ﬂ9uzu=iM"
1y ,

h €
g0 |-1

25



SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

FEMi System of Equations S train

System of equations
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System of equations
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Finite Element Method SCtram

AStationary heat transfer in 2D
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Boundary Element Method  SCtrain

AIDEA: integral based approach
AStarting point of derivation iBwverselntegral Form of governing equation

ASolutionboundaryis discretized into sudomains, calletboundary
elements(BES)

Aln the BE suolomain (only boundary!) we approximate unknown
guantities

AADVANTAGHEOolution of governing field equations is converted into
searching unknown guantitiesn boundary

ASuitable for solution of potential problems & infinite problems
ADISADVANTAGEII and norsymmetrical matrices
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Boundary Element Method  SCtrain

ABasic differences between BVP solution methods
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Finite Volume Method SCtraiﬂ

AIDEA: integral based approach

AStarting] point of derivation imtegral Fornof governing equation, where the integral
over solution domain is converted In surface integral around the domain

ASollutiondomainis discretized into sudomains, calledinite volumes(cells or control
volumes)

AThe unknown solution variable is constant over the cell (calculated at the centre)

AADVANTAGEOolution of governing field equations is converted into searching
unknown guantityin the cell centre.

A Continuity requirements are simply fulfilled.
A Similar toFDM, Suitable for solution of heat transfer & fluid flow problems
ADISADVANTAGHIfilment of boundary conditions related to solution variable
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APresentation on the stationary heat transfer problem
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AGreenGauss theorem

vk grad(T)] dv = ifprad J En dC

N

|
“ s
||

o

vk grad( )] dv = - ¢ d

ik grad(T) b dG

2

_q:]d

j div[k grad(T)] dQ = j k grad(T) A dT

Heat balance over control volume
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Finite Volume Method SCtraiﬂ

AReduction to 1DT =T(X)
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Since the temperature is unknown, we use approximation
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Finite Volume Method SCtraiﬂ

AReduction to 1DT =T(X)
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Righthand side of the equation, we approximate as
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Finite Volume Method SCtraiﬂ

ASystem of equations Heat transfer problem
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