
Introduction to the Navier‐Stokes Equations
Mirco Valentini, Cineca

09/2022



Promise
Mirco Valentini, Cineca

2

CONSERVATIVE LAWS



Outline
Mirco Valentini, Cineca

3

Continuum hypothesis,

Lagrangian vs. Eulerian,

Reynolds transport theorem,

Conservation laws for fluids,
Source terms for NS equation

Navier Stokes equations



CONTINUUM HYPOTHESIS



Continuum hypothesis
Mirco Valentini, Cineca

5

Navier Stokes equations describe the behaviour of matter on a macroscopic scale
which is large with respect to the distance between molecules whose structure does
not need to be taken into account explicitly,

the main idea is to consider a control volume (material element) that has to be:

big enough to avoid the description of the molecules,

small enough to consider valid the differential calculus
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•Material Element From the observational viewpoint, the reason why the particle
structure of the fluid is irrelevant is that the sensitive volume of a certain instrument
embedded in the fluid itself is small enough for the measurement to be a local one relative
to the macroscopic scale even if it is large enough for the fluctuations arising from the
molecular motion to have no effect on the observed average. If the volume of fluid to
which the instrument responds were comparable with the volume in which variations due
to molecular fluctuations take place, observations would fluctuate from one observation
to another and the results would vary in an irregular way with the size of the sensitive
volume of the instrument.
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LAGRANGIAN: typically used in structure modeling ‐ a way of looking at fluid motion
where the observer follows an individual fluid parcel as it moves through space and
time
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EULERIAN: typically used in fluid dynamics ‐ a way of looking at fluid motion where
the observer focuses on specific locations in the space (control volume) through
which the fluid flows as time passes
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EULERIAN: typically used in fluid dynamics ‐ a way of looking at fluid motion where
the observer focuses on specific locations in the space (control volume) through
which the fluid flows as time passes

LAGRANGIAN: typically used in structure modeling ‐ a way of looking at fluid motion
where the observer follows an individual fluid parcel as it moves through space and
time
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• Generally speaking, the Reynolds Transport Theorem is employed to evaluate the rate of
change of volume integrals (Φ) of a material property (ϕ) when the volume is changing in
time:

Φ(t) =
∫
Ω(t)

ϕ(x, t)dΩ, x = ξ (X, t)

Where ϕ (x, t) is a function of actual position (x) and time (t). X is the reference
configuration of the system.
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• Generally speaking, the Reynolds Transport Theorem is employed to evaluate the rate of
change of volume integrals (Φ) of a material property (ϕ) when the volume is changing in
time:

dΦ
dt =

∫
Ω(t)

∂ϕ(x, t)
∂t dΩ +

∮
∂Ω(t)

(
∂x
∂t n

)
ϕ(x, t)d∂Ω = 0
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• Generally speaking, the Reynolds Transport Theorem is employed to evaluate the rate of
change of volume integrals (Φ) of a material property (ϕ) when the volume is changing in
time:

dΦ
dt =

∫
Ω(t)

∂ϕ(x, t)
∂t dΩ +

∮
∂Ω(t)

(u ϕ(x, t)) · nd∂Ω = 0

dΦ
dt =

∫
Ω(t)

∂ϕ(x, t)
∂t dΩ +

∫
Ω(t)

∂ (u ϕ(x, t))
∂x dΩ = 0
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Noether's first theorem states that every differentiable symmetry of the action of a
physical system has a corresponding conservation law,

In mechanics there are conservation laws pertaining to mass M, momentum Q,
energy E,
It is possible to use the Reynolds transport theorem to write the balance equations
for a fluid.
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Given a volume of fluid Ω, it is hence possible to write the explicit formulas for the
conserved mechanical quantities contained in it.

M =

∫
Ω
ρ dΩ ⇒ MASS

Q =

∫
Ω
ρu dΩ ⇒ MOMENTUM

E =

∫
Ω
ρe dΩ ⇒ ENERGY
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Given a volume of fluid Ω, it is hence possible to write the explicit formulas for the
conserved mechanical quantities contained in it.



d
dt

∫
Ω
ρ dΩ = 0 ⇒ MASS

d
dt

∫
Ω
ρu dΩ = 0 ⇒ MOMENTUM

d
dt

∫
Ω
ρe dΩ = 0 ⇒ ENERGY
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

∫
Ω

∂ρ

∂t dΩ +

∮
∂Ω

(ρ) uinid∂Ω = 0∫
Ω

∂ρuj

∂t dΩ +

∮
∂Ω

(ρuj) uinid∂Ω = 0∫
Ω

∂ρe
∂t dΩ +

∮
∂Ω

(ρe) uinid∂Ω = 0
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Using the
divergence theorem it is possible to rewrite all the equations in therms of volume integrals:



∫
Ω

∂ρ

∂t dΩ +

∫
Ω

∂ (ρ) ui

∂xi
dΩ = 0∫

Ω

∂ρuj

∂t dΩ +

∫
Ω

∂ (ρuj) ui

∂xi
dΩ = 0∫

Ω

∂ρe
∂t dΩ +

∫
Ω

∂ (ρe) ui

∂xi
dΩ = 0
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Since no assumption has been done on the volume Ω, the system must be valid for all the
possible volumes Ω.



∂ρ

∂t +
∂ (ρ) ui

∂xi
= 0

∂ρuj

∂t +
∂ (ρuj) ui

∂xi
= 0

∂ρe
∂t +

∂ (ρe) ui

∂xi
= 0
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

∂ρ

∂t + ∇ (ρu) = 0

∂ρuj

∂t + ∇ (ρuju) = 0

∂ρe
∂t + ∇ (ρeu) = 0
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w =


ρ
ρuj
ρe

 , F (w) =


ρu
ρuuj
ρeu



• differential form:

∂w
∂t +∇ (F (w)) = 0

• differential advective form:

∂w
∂t + A (w)∇ (w) = 0



SOURCE TERMS FOR NAVIER‐STOKES
EQUATIONS
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two kind of source terms are possible:

volume source terms,

surfaces source terms
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surface forces, represented with a tensor because dependes on the orientation,

volume forces, are distributed in the volume such as gravity, electromagnetic ….

ΣF = fSURFACE + fVOLUME
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surface forces, represented with a tensor because dependes on the orientation,

volume forces, are distributed in the volume such as gravity, electromagnetic ….

fSURFACE =

∮
∂Ω

σ (x, t) n d∂Ω =

∫
Ω

∂ σ (x, t)
∂x dΩ =

∫
Ω

∂ σi j (x, t)
∂xi

dΩ

σi j stress tensor in the flow,

n normal to the border of the domain Ω
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In order to have a well defined set of equations, we need to introduce amodel of the
relation between the state of the fluid and the stress tensor.

There are many ways to define this relation, the most common is related to the so‐called
Stokesian fluids, which is based on

The stress tensor is a continuous function only of the strain rate tensor, which is

defined as: ϵ̇i j ≜
(
∂ui

∂xj
+

∂uj

∂xi

)
, and various thermodynamic state functions,

We assume that the fluid is isotropic and homogeneous,

When the strain rate is 0, then the stress tensor is defined by the isotropic pressure:
ϵ̇i j = 0 ⇒ σi j ≜ p δi j
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σi j (x, t) = FStokes

(
p, µ, λ, ∂up

∂xq

)
• If we assume to use a Stokesian fluid model with a linear relation between stress and
rate of strain, we obatian the so‐called NEWTONIAN FLUID.

• In the modern generalization of Hooke’s law, each component of the stress tensor is a
linear combination of all components of the strain rate tensor, and allows to satisfy all the
requirements of a NEWTONIAN FLUID.

σi j (x, t) = −p δi j + τi j (x, t)

= −p δi j + ci j p q
∂up

∂xq
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• From symmetry and thermodynamics conditions it is possible to reduce the free
parameters in the tensor ci j p q from 81 = 34 to 2.

The condition to be imposed are:
ci j p q = cj i p q

ci j p q = ci j q p

ci j p q = cp q i j

ci j p q ⇒ ISOTROPIC TENSOR
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• From symmetry and thermodynamics conditions it is possible to reduce the free
parameters in the tensor ci j p q from 81 = 34 to 2.

The relation between the stress tensor and the and the strain rate can then be rearranged
in the following way:

ci j p q =λδi jδp q+µ(δi pδj q + δi qδj p)

Where (λ, µ) are the so‐called LAME CONSTANTS.
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• From symmetry and thermodynamics conditions it is possible to reduce the free
parameters in the tensor ci j p q from 81 = 34 to 2.

τi j = (λδi jδp q + µ (δi pδj q + δi qδj p))
∂up
∂xq

= λδi j
∂uq
∂xq

+ µ
(
∂ui
∂xj

+
∂uj
∂xi

)
= λδi jϵ̇q q + 2µ ϵ̇i j
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• From symmetry and thermodynamics conditions it is possible to reduce the free
parameters in the tensor ci j p q from 81 = 34 to 2.

σi j = −p δi j + λδi j ϵ̇q q + 2µ ϵ̇i j

σi j = −p δi j +
(
η − 2

3µ
)
δi j ϵ̇q q + 2µ ϵ̇i j



Powers
Mirco Valentini, Cineca

36

The energy conservation equation states that the energy change in time can happen if
some power is provided/removed from the system.

It is possible to divide the power sources in two main groups, the mechanical and the
thermal.

mechanical power due to forces acting on surfaces (stress),

mechanical power due to forces acting on the volume (field forces),

thermal power due a thermal flow through a surface,

thermal exchange in the volume due to irradiation.
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The energy conservation equation states that the energy change in time can happen if
some power is provided/removed from the system.

It is possible to divide the power sources in two main groups, the mechanical and the
thermal.

ΣW = ΣwMECH +ΣwTHE

= wMECH
SURFACE + wMECH

VOLUME + wTHE
SURFACE + wTHE

VOLUME



NAVIER STOKES EQUATIONS
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continuum hypothesis,

Newtonian fluid,

inertial frame,

no electromagnetic forces,

no chemical reactions,

no relativistic phenomena,

the provided thermodynamics.
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

∂ρ

∂t +
∂ρui

∂xi
= 0

∂ρuj

∂t +
∂ρujui

∂xi
=

∂ (τi j − p δi j)

∂xi
+ ρ fj

∂ρe
∂t +

∂ρeui

∂xi
=

∂ (τi j uj − qi − p ui)

∂xi
+ ρ (fj uj + QR)


T (ρ (x, t) , p (x, t) ,E (x, t)) = 0

τi j = λδi j
∂uq

∂xq
+ µ

(
∂ui

∂xj
+

∂uj

∂xi

)
; λ = η − 2

3
µ
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incompressible Navier‐Stokes can be obtained from the complete Navier‐Stokes
equations by imposing the condition that the density must be constant ρ = CONST,

by imposing this condition:
the continuity equation (conservation of mass) became the codition of null divergence
of the velocity field,
the energy equation became decoupled from the other equations,
the thermodynamics disapper, and the pressure is just a scalar field used to satisfy the
null divergence on the velocity field.



Incompressible Navier Stokes Equations
Mirco Valentini, Cineca

42



∂ρ

∂t + ui
∂ρ

∂xi
+ ρ

∂ui

∂xi
= 0

ρ
∂uj

∂t + ρ

(
uj
∂ui

∂xi
+ ui

∂uj

∂xi

)
=

∂

∂xi
τij −

∂

∂xi
p δi j + ρ fj

∂ρe
∂t +

∂ρeui

∂xi
=

∂ (τi j uj − qi − p ui)

∂xi
+ ρ (fj uj + QR){

T (ρ(x,t),p(x,t),E(x,t)) = 0

∂
∂xi

τi j=λδi j
∂
∂xi

∂uq
∂xq +µ ∂

∂xj
∂ui
∂xi

+µ ∂
∂xi

∂uj
∂xi

; λ=η− 2
3
µ



Incompressible Navier Stokes Equations
Mirco Valentini, Cineca

43

• In tensor notation: 
∂ui

∂xi
= 0

ρ
∂uj

∂t + ρui
∂uj

∂xi
= − ∂p

∂xj
+ µ

∂2uj

∂x2
i
+ ρ fj

• In vector notation: 
∇u = 0

∂u
∂t + (u∇)u =

µ

ρ
∇2u − 1

ρ
∇p
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Thank you for your attention!



The Reynold's experiment
Mirco Valentini, Cineca

45



Non‐dimensional Equations
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Where Reynold's number comes from
∇̃ũ = 0

∂ũ
∂ t̃ +

(
ũ∇̃

)
ũ =

1

Re∇̃
2ũ − 1

ρ
∇̃p̃
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THE ENERGY CASCADE:

the interaction between pressure
gradients, inertial terms and viscous
forces,

Small vortices on the shoulder of bigger
vortices, on the shoulders of bigger
vortices …
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No matter how powerful future computers will be, it will always exist a turbulence
problem that can not be solved in human time![Maurizio Quadrio]
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Many ways to compute the mean that lead to diffierent models (RANS,ILES,ELES)

x ≜ x̄ + x′, WITH ¯(•) → MEAN OPERATOR (1)

The more intuitive is ILES, but concepts are the same also for other approaches
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The need of turbulence models
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Turbulence models
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Businnesque hypothesis (algebraic) νt,

1 equation (differential) Spallart‐Almaras,

2 equations (differential) κ− ϵ,κ− ω,

Machine learning approaches?
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Thank you for your attention!


