
Introduction to the Finite Volume Method
Simone Bnà, Cineca

09/2022



Disclaimer and Acknowledgements
Simone Bnà, Cineca

2

“This offering is not approved or endorsed by OpenCFD ® Limited, the producer of the
OpenFOAM ® software and owner of the OPENFOAM ® and OpenCFD ® trade marks.”

"This material is based on An introduction to Computational Fluid Dynamics using
OpenFOAM with advanced topics by Riccardo Rossi, Head and Founder of RED Fluid
Dynamics, March/April 2021".



The scalar transport equation
Simone Bnà, Cineca

3

We use the finite‐volume method (FVM) to solve the flow governing equations. The
integral form of the scalar transport equation (STE) must be discretized and solved:∫

V

∂ϕ

∂t dV +

∫
A
(ujϕ)nj dA =

∫
A

D ∂ϕ

∂xj
nj dA +

∫
V
(Sϕ) dV

Discretization steps:

Numerical integration

Time‐advancement schemes

Differentiation schemes

Interpolation schemes



The semi‐discrete transport equation
Simone Bnà, Cineca

4

We use themidpoint rule as numerical method for approximating the surface and volume
integrals that appear in the scalar transport equation and is valid for a generic polyhedral
cell. In formula we have:

∂

∂t(ϕ∆V) +
∑

f
(ujϕ)f Afj =

∑
f

Df
∂ϕ

∂xj

∣∣∣∣
f
Afj + Sϕ∆V

where Afj is the face area vector:

Afj = ∆Afnj



Time integration schemes I
Simone Bnà, Cineca

5

Time integration schemes provides a numerical approximation to the time rate of change
of a field variable:∫ tn+1

tn

∂ϕ

∂t dt = [ϕn+1 − ϕn] =
1

∆V

∫ tn+1

tn
f(t, ϕ(t))dt



Time integration schemes II
Simone Bnà, Cineca

6

The backward Euler and the trapezoidal rule, or Crank‐Nicolson scheme, are implicit
schemes and they are unconditionally stable, whereas the forward Euler scheme is only
conditionally stable.

The stability condition for the forward (explicit) Euler scheme in convection dominated
flows is associated with the Courant‐Friedrichs‐Lewis number (CFL):

CFL =
u∆t
∆x ≤ 1

where∆x and∆t are the grid spacing and time‐step size, respectively.



The discrete transport equation
Simone Bnà, Cineca

7

If we integrate in time the semi‐discrete transport equation and we apply the
unconditionally stable backward Euler scheme we get:

(ϕn+1 − ϕn)∆V +
∑

f
(un

j ϕ
n+1)f Afj =

∑
f

Df
∂ϕn+1

∂xj

∣∣∣∣
f
Afj + Sn+1

ϕ ∆V

Does the CFL condition need to be satisfied?



OpenFOAM software
Simone Bnà, Cineca

8

OpenFOAM is a free, open source CFD software package written in C++ and released free
and open‐source under the GNU General Public License by the OpenFOAM Foundation.



OpenFOAM features I
Simone Bnà, Cineca

9

OpenFOAM is based on the same features of state‐of‐the‐art commercial CFD
software(Ansys Fluent, Star‐CCM+, ...):

Finite Volume framework

Collocated unstructured polyhedral meshes

Second‐order accurate in space and time

Massive parallel computations via domain decomposition and MPI



OpenFOAM features II
Simone Bnà, Cineca

10

OpenFOAM uses equation mimicking to perform field algebra and discretisation, which
resembles mathematical notation. For the Navier‐Stokes equations

∂u
∂t + (∇ · uu)− ν∆u = −∇

(
p
ρ

)
the following code is used:

fvm::ddt(U)
+ fvm::div(phi, U)
- fvm::laplacian(nu, U)
== -fvc::grad(p))



OpenFOAM solvers
Simone Bnà, Cineca

11

OpenFOAM provides a wide list of solvers for complex fluid flows involving chemical
reactions, turbulence and heat transfer, to solid dynamics, ...



icoFoam solver
Simone Bnà, Cineca

12

The icoFoam solver is a pressure‐based solver for time‐dependent and incompressible
laminar flows:

∇ · u = 0

∂u
∂t + (u · ∇)u − ν∆u = −∇

(
p
ρ

)
Segregated solver: solve for u and p separately.
Since the continuity equation provides a kinematic constraint only on the velocity field,
an evolution equation for pressure has to be derived.
OpenFOAM uses the so‐called pressure‐velocity coupling algorithms.



Deriving the pressure equation I
Simone Bnà, Cineca

13

Themomentum equation(s) in generalmatrix form is:

M u = −∇p

where M = M(u) is the matrix of coefficients arising from time and spatial discretization.
M1,1 M1,2 M1,3 ... M1,n
M2,1 M2,2 M2,3 ... M2,n
M3,1 M3,2 M3,3 ... M3,n
... ... ... ... ...

Mn,1 Mn,2 Mn,3 ... Mn,n




u1

u2

u3

...
un

 = −


(∇p)1
(∇p)2
(∇p)3
...

(∇p)n


Note that the coefficients matrix is a function of the velocity field due to the non linearity
of the momentum equation.



Deriving the pressure equation II
Simone Bnà, Cineca

14

Using the available pressure from previous calculation step or from initial conditions, the
velocity field can be computed by solving the momentum equation, where the pressure
gradient is an explicit source term collocated on the right hand side (RHS).

In the framework of implicit schemes, however, this velocity field will not satisfy the
continuity equation because the pressure gradient is associated with the previous
calculation step. The computed, or predicted, velocity field will only represent a guess.
This stage of the pressure‐velocity coupling algorithm is calledmomentum predictor.

M u∗ = −∇p solve (UEqn == -fvc::grad(p))



Deriving the pressure equation III
Simone Bnà, Cineca

15

In order to obtain a diverge‐free velocity field a pressure equation is derived using the
continuity constraint.
Firstly, a diagonal matrix is extracted from the matrix of coefficients of the momentum
equation, which can be easily inverted:

A =


M1,1 0 0 ... 0
0 M2,2 0 ... 0
0 0 M3,3 ... 0
... ... ... ... ...
0 0 0 ... Mn,n

 A−1 =


1/A1,1 0 0 ... 0

0 1/A2,2 0 ... 0
0 0 1/A3,3 ... 0
... ... ... ... ...
0 0 0 ... 1/An,n


The corresponding code providing the reciprocal of the diagonal component is:

volScalarField rUA = 1.0/UEqn().A()



Deriving the pressure equation IV
Simone Bnà, Cineca

16

In the second step, the residual vector H is computed by subtracting the diagonal
component from the momentum equations:

H = Au − Mu

H = −


0 + M1,2u + M1,3u + ...+ M1,nu
M2,1u + 0 + M2,3u + ...+ M2,nu
M3,1u + M3,2u + 0 + ...+ M3,nu

...
Mn,1u + Mn,2u + Mn,3u + ...+ 0


The residual vector will represent a source term for the pressure equation.



Deriving the pressure equation V
Simone Bnà, Cineca

17

From the definition of the residual vector and recalling that Mu = −∇p, the velocity
field can be calculated as follows:

H = Au +∇p −→ Au = H −∇p
A−1A u = A−1H − A−1∇p −→ u = A−1H − A−1∇p

Using the continuity equation, the pressure equation is finally obtained:

∇ · u = 0 −→∇ · (A−1H − A−1∇p) = 0

∇ · (A−1∇p) =∇ · (A−1H)

the solution of the PDE provides the new pressure field obeying to the continuity
equation.



Pressure equation in OpenFOAM
Simone Bnà, Cineca

18

In the OpenFOAM literature, the pressure equation is often reported as follows:

∇ · (A−1∇p) = ∇ · (A−1H) ≡ ∇ ·
(

1

ap
∇p

)
= ∇ ·

(
H(u)

ap

)
The pressure equation represents a Poisson‐like equation where the source term is given
by the residual vector of the momentum equation.

The corresponding OpenFOAM code to assemble the pressure equation is the following:

volScalarField rUA = 1.0/UEqn().A()
HbyA = rUA*UEqn().H()
fvm::laplacian(rAU, p) == fvc::div(phiHbyA)



Pressure‐velocity coupling
Simone Bnà, Cineca

19

The complete solution procedure for the continuity and momentum equations is the
following:

Solve themomentum equation in the predictor step−→ M u = −∇p
Compute the residual vector−→ H = Au − Mu
Solve the pressure equation−→ ∇ · (A−1∇p) = ∇ · (A−1H)

Compute the new velocity field in the corrector step−→ u = A−1H − A−1∇p
The new velocity field satisfies the continuity equation. However, the pressure equation is
no longer satisfied since the source term represented by the residual vector depends on
the velocity field and it has changed.

An iterative procedure is needed to solve the coupled pressure‐velocity system of
equations.



The PISO algorithm
Simone Bnà, Cineca

20

In the PISO (Pressure Implicit with Splitting of Operator) algorithm the momentum
predictor step is performed once per time‐step:

1. Start the time loop or a new time step

2. Solve themomentum equation in the predictor step−→ M u = −∇p
3. Compute the residual vector−→ H = Au − Mu
4. Solve the pressure equation−→ ∇ · (A−1∇p) = ∇ · (A−1H)

5. Compute the new velocity field in the corrector step−→ u = A−1H − A−1∇p
6. If pressure converged go to 1, if not converged go to 3

The inner loop (3‐6) performed to update the residual vector with the new velocity field is
called pressure‐correction loop. In OpenFOAM, the number of correctors (nCorrectors) to
be performed per time‐step is specified in the fvSolution dictionary in the system folder.



Courant number limit I
Simone Bnà, Cineca

21

The Navier‐Stokes equations contains two non‐linearity: the convection term and the
pressure velocity coupling.
The non‐linear convection term can be treated via an iterative approach using the Picard's
method:

(un+1 · ∇)un+1 ≈ (un · ∇)un+1 +O(∆t2)

where un and un+1 are the previous (available) and the new (estimated) solutions,
respectively.



Courant number limit II
Simone Bnà, Cineca

22

The characteristic of the PISO algorithm is that the momentum equation is updated only
once per time‐step. Since the coefficients of the matrix M = M(u) contains the
convection velocity, this means that fluxes are kept frozen during the correction steps.

This is only possible at low Courant numbers (very small time steps):

CFL =
u∆t
∆x ≤ 1 although implicit in time!

a condition where the pressure‐velocity coupling has a much stronger impact on the
momentum equation than the non‐linearity arising from the convection term.



Steady‐state simulations
Simone Bnà, Cineca

23

In a steady‐state problem, a large time‐step size could be used because there is no need
for obtaining accurate (i.e. divergence‐free velocity field) solutions at the end of each
time step.

However, the stability constraint given by the CFL condition (CFL≤ 1) associated with the
frozen convection velocity in the PISO loop does not allow for the use of a large time‐step
size. Therefore, a different algorithm should be used when the transient solution is not of
interest.
The SIMPLE [1] (Semi‐Implicit Method for Pressure‐Linked Equations) is the most popular
algorithm to obtain a steady‐state solution to the Navier‐Stokes equations.

[1] S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in

three‐dimensional parabolic flows, Int. J. Heat Mass Transfer 15 (10) (1972) 1787‐1806.



The SIMPLE algorithm
Simone Bnà, Cineca

24

In the SIMPLE algorithm, themomentum predictor step is performed at every
pseudo‐time iteration:
1. Start the time loop or a new time step

2. Solve themomentum equation in the predictor step−→ M u = −∇p
3. Compute the residual vector−→ H = Au − Mu
4. Solve the pressure equation−→ ∇ · (A−1∇p) = ∇ · (A−1H)

5. Compute the new velocity field in the corrector step−→ u = A−1H − A−1∇p
6. Go to 1

Furthermore, since a divergence‐free velocity field is expected only at the end of the
pseudo‐time loop, the corrector or inner loop is dropped (see PISO algorithm) and only
the outer loop is performed at each every iteration.



Under‐relaxation I
Simone Bnà, Cineca

25

Since the time‐derivative is dropped in the SIMPLE algorithm the diagonal‐dominance of
the momentum equation is reduced, potentially leading to an unstable solution.
Under relaxation is thus used in the momentum and other scalar equations to artificially
increase the diagonal‐dominance and improve stability:

apun+1
p +

∑
nb

anbun+1
nb = bp

1− α

α
apun+1

p + apun+1
p +

∑
nb

anbun+1
nb = bp +

1− α

α
apun

p

1

α
apun+1

p +
∑
nb

anbun+1
nb = bp +

1− α

α
apun

p

where 0 < α ≤ 1 is the under‐relaxation factor.



Under‐relaxation II
Simone Bnà, Cineca

26

In OpenFOAM, the under‐relaxation factors are set in the fvSolution dictionary located in
the system directory, where both fields and equations factors can be used.

The equations under‐relaxation factors, are used to manipulate the coefficients matrix
and improve its diagonal‐dominance.
Fields under‐relaxation factors can be also specified to limit the change in the velocity
and pressure fields during the pressure velocity‐coupling:

pn+1 = pn + αpp′

un+1 = αuu∗ + (1− αu)un

where αp and αu are the fields under‐relaxation factor and p′
and u∗ are the corrected

pressure and velocity values.



The simpleFoam solver
Simone Bnà, Cineca

27

The simpleFoam solver is a pressure‐based solver for steady‐state computations of
incompressible laminar or turbulent flows within the framework of RANS modeling:

∇ · u = 0

(u · ∇)u −∇ · R − ν∆u = −∇
(

p
ρ

)
where R is the Reynolds stress tensor, accounting for the turbulent component of the
flow and requiring a turbulence model to be estimated.



Time stepping vs iterating
Simone Bnà, Cineca

28

The icoFoam and simpleFoam solvers have similar behavior because there is a strong
similarity in the system of algebraic equations solved by the two methods.

For a generic transport equation, it can be shown that the time step‐size in an implicit
time‐marching technique and the under‐relaxation factor in the iterative solution
technique relate each other as follows:

∆t = α∆V
ap(1− α)

, α =
ap∆t

ap∆t +∆V
where ap and∆V are the central coefficient of the algebraic equation and the cell
volume, respectively.



Simone Bnà, Cineca

29

Thank you for your attention!


