

Introduction to High-Performance Computing I

Ondřej Meca, IT4Innovations

 Univerza v Ljubljani

 Image: State of the sta

Co-funded by the Erasmus+ Programme of the European Union This project has been funded with support from the European Commission.

This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Ondřej Meca, IT4Innovations

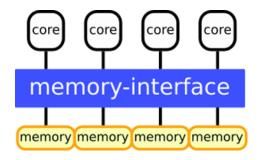
0 R A A

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Karolina, GPU partition - Apollo 6500, AMD EPYC 7452 32C 2.35GHz, NVIDIA A100 SXM4 40 GB, Infiniband HDR200

IT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava, Czechia

Congratulations from the Green500 Editors

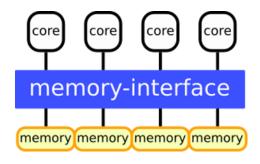


Ondřej Meca, IT4Innovations

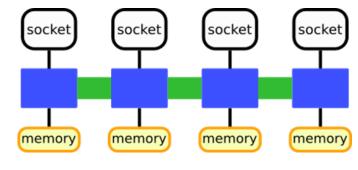
Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Multi-processor (socket)

- all cores share the same memory
- single / global address space
- the same speed to all memory locations (uniform memory access)


socket UMA (uniform memory access) SMP (symmetric multi-processing)

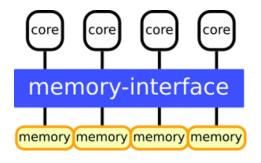
Ondřej Meca, IT4Innovations



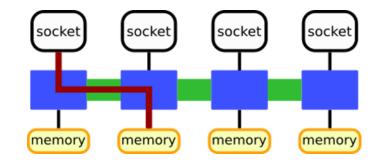
Several sockets with multi-processors (node)

- memory is shared among all CPUs
- single / global address space
- the same speed to all memory locations (uniform memory access)

socket UMA (uniform memory access) SMP (symmetric multi-processing)


node ccNUMA (cache-coherent non-uniform ...) first touch, pinning!

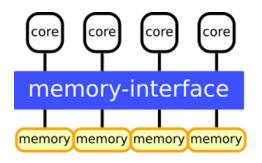
Ondřej Meca, IT4Innovations



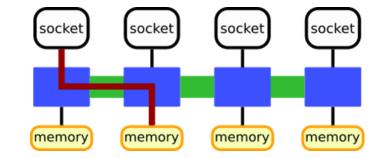
Several sockets with multi-processors (node)

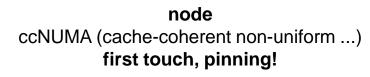
- memory is shared among all CPUs
- single / global address space
- the same speed to all memory locations (uniform memory access)
- the speed is dependent on a memory location (non-uniform memory access)

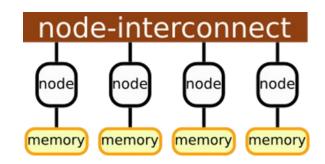
socket UMA (uniform memory access) SMP (symmetric multi-processing)



node ccNUMA (cache-coherent non-uniform ...) first touch, pinning!


Ondřej Meca, IT4Innovations


Multi-computers with various architectures (cluster)


- set of nodes interconnected by a network
- each node has separated memory
- slower access to memories of other processors
- accelerated nodes

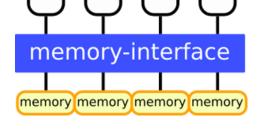
socket UMA (uniform memory access) SMP (symmetric multi-processing)

cluster NUMA (non-uniform memory access) fast access to own memory only

8

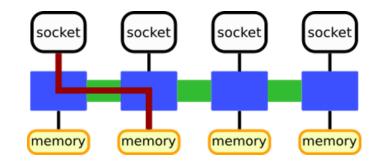
HPC architecture

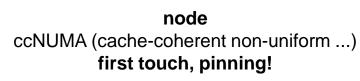
Ondřej Meca, IT4Innovations

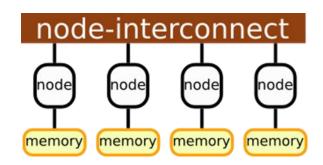

OpenMP: shared memory (socket, node)

core

MPI: distributed memory (socket, node, cluster)


CUDA: accelerated nodes

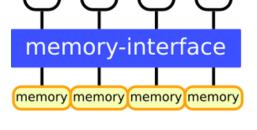

core



core

socket UMA (uniform memory access) SMP (symmetric multi-processing)

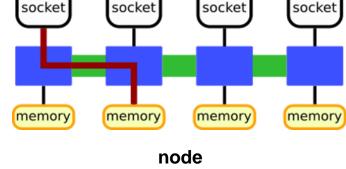
cluster NUMA (non-uniform memory access) fast access to own memory only

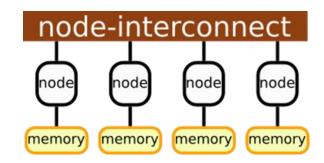


Ondřej Meca, IT4Innovations

Hybrid approach

- combination of more approaches (OpenMP, MPI, CUDA,...)
- potential to fully utilize current (future) hardware


core


core

core

socket UMA (uniform memory access) SMP (symmetric multi-processing)

ccNUMA (cache-coherent non-uniform ...) first touch, pinning!

cluster NUMA (non-uniform memory access) fast access to own memory only

Ondřej Meca, IT4Innovations

120W - 280W

	Karolina		CATEGORY	EPYC 7002 (Rome)	EPYC 7003 (Milan)
	7nm		Socket	SP3	SP3
		700	Core / Process	Zen2 / 7nm	Zen3 / 7nm
	7nm 3 RD GEN 7003 "Milan" 14nm 2 ND GEN 7002 64C /128T "Zen3" cores "Zen3" cores	7003	Max Core Count / Threads	64 / 128	64 / 128
14nm		"Zen3" cores	L3 Cache Size	256 MB	256 MB
1 ^{sr} GEN 64C /128T	PCle® Gen4 DDR4 - 3200	CCX Arch	4 Cores + 16MB	8 Cores + 32MB	
7001 32C /64T	7001 "Zen2" cores 32C /64T PCIe* Gen4 "Zen2" cores PCIe* Gen3 DDR4 – 2667 DDR4		Memory	8 Ch DDR4-3200, NVDIMM-N	8 Ch DDR4-3200, NVDIMM-N
PCle [®] Gen3		GPU nodes	PCIe Tech & Lane Count	PCle Gen4, 128L/Socket	PCle Gen4, 128L/Socket
			Security	SME, SEV	SME, SEV, SNP
			Chipset	NA	NA

Power

120W - 280W

Ondřej Meca, IT4Innovations

Universal partition

720 compute nodes

2x 64-core AMD EPYC 7H12 @ 2.6 GHz

256 GB of memory

346 GB/s memory bandwidth, 5.3 Tflop/s per node

= (2 flops per FMA operation) x (2 FMA units per core) x (4 doubles in AVX2 SIMD) x (64 cores) x (2 CPUs) x (2.6 GHz)

3.8 Pflop/s peak total

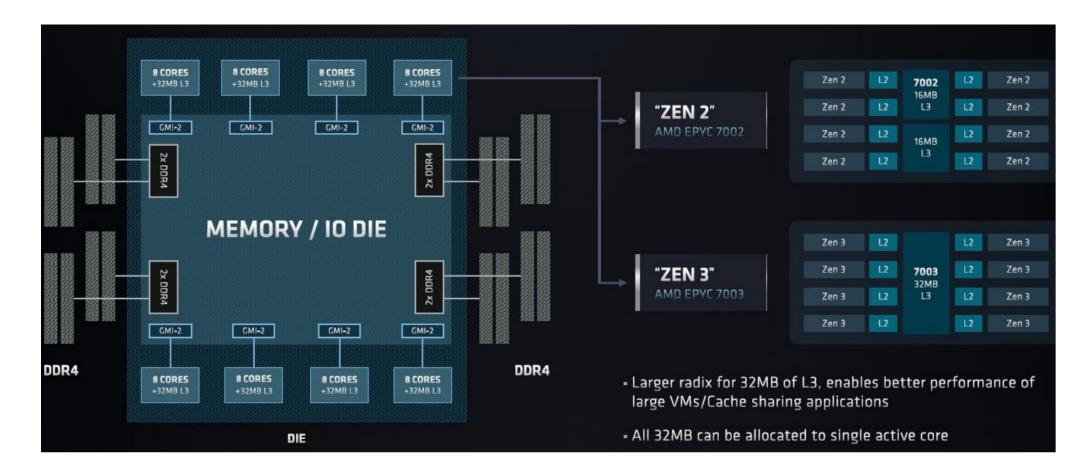
100 Gb/s NIC (infiniband HDR100)

GPU-accelerated partition: 72 compute nodes

2x 64-core AMD EPYC 7763 @ 2.45 GHz

1024 GB of memory

8x NVIDIA A100 SXM4 40GB


12.4 TB/s memory bandwidth, 156 Tflop/s per node

Total 11.1 Pflop/s peak

4x 200 Gb/s NIC

Ondřej Meca, IT4Innovations

SUPERCOMPUTING

Sctrain KNOWLEDGE PARTNERSHIP

Ondřej Meca, IT4Innovations

numactl -H

node 0 cpus: 0 - 15

node 1 cpus: 16 - 31

node 2 cpus: 32 - 47

node 3 cpus: 48 - 63

node 4 cpus: 64 - 79

node 5 cpus: 80 - 95

node 6 cpus: 96 - 111

node 7 cpus: 112 - 127

node 0-7 size: 128 GB

2 3

12 10 12

12 12

12

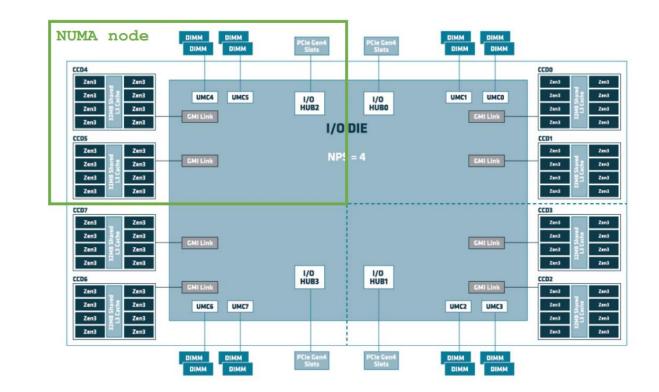
10

0

0 10

1 12

2 12

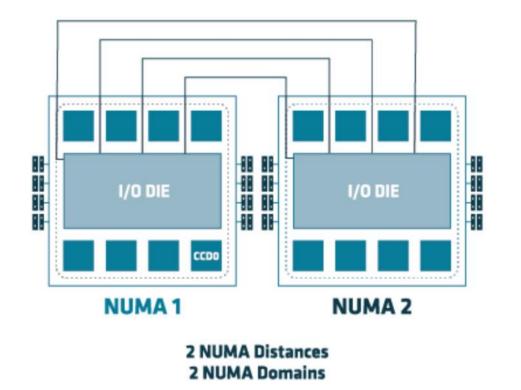

1

3 12 12 12

10

12 12

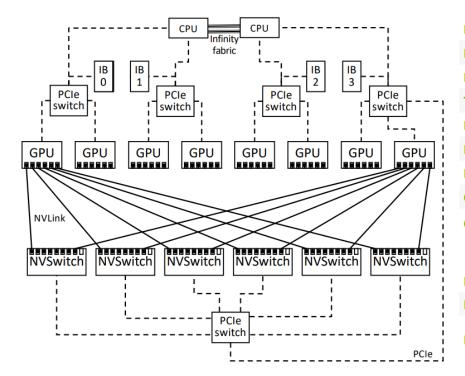
Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP


14

Karolina cluster

Ondřej Meca, IT4Innovations

2 x EPYC 7003 processors connect through 4 x GMPI links


	0	1	2	3	4	5	6	7
0	10	12	12	12	32	32	32	32
1	12	10	12	12	32	32	32	32
2	12	12	10	12	32	32	32	32
3	12	12	12	10	32	32	32	32
4	32	32	32	32	10	12	12	12
5	32	32	32	32	12	10	12	12
6	32	32	32	32	12	12	10	12
7	32	32	32	32	12	12	12	10

Ondřej Meca, IT4Innovations

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

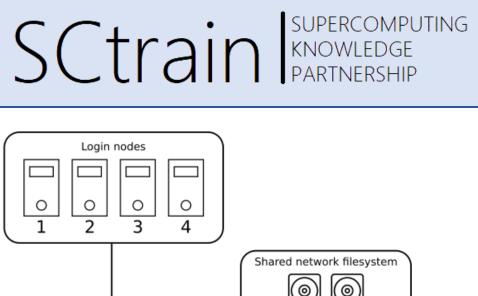
	A100 40GB SXM	
FP64	9.7 TFLOPS	
FP64 Tensor Core	19.5 TFLOPS	
FP32	19.5 TFLOPS	
Tensor Float 32 (TF32)	156 TFLOPS 312 TFLOPS*	
BFLOAT16 Tensor Core	312 TFLOPS 624 TFLOPS*	
FP16 Tensor Core	312 TFLOPS 624 TFLOPS*	
INT8 Tensor Core	624 TOPS 1248 TOPS*	
GPU Memory	40GB HBM2	
GPU Memory Bandwidth	1,555GB/s	
ax Thermal Design Power (TDP)	400W	
Multi-Instance GPU	Up to 7 MIGs @ 5GB	
Form Factor	SXM	
Interconnect	NVLink: 600GB/s PCIe Gen4: 64GB/s	

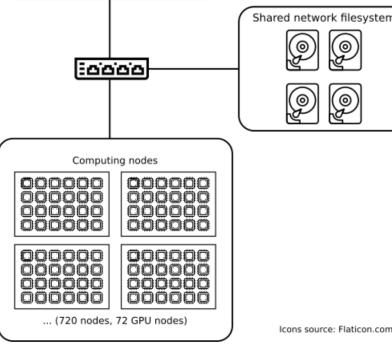
* With sparsity

** SXM4 GPUs via HGX A100 server boards; PCIe GPUs via NVLink Bridge for up to two GPUs

Ondřej Meca, IT4Innovations

Login nodes


- Program preparation
- Job submission


Compute nodes (720 CPU nodes, 72 GPU nodes)

• Job execution

Shared filesystem

- Code
- Job inputs and outputs
- Shared between login and compute nodes

Data storage

Ondřej Meca, IT4Innovations

HOME workspace (NFX)

- Located at ~ (your home directory)
- Limited size (~25 GiB), quite slow (2-3 GiB/s)
- Use for config files, build artifacts, source code repositories

PROJECT workspace (NFS)

- Very large (~15 PiB), rather slow (40 GiB/s)
- Each project has its own directory (deleted after project ends)
- Central storage for all project data, use for important data

SCRATCH workspace (Lustre)

- Located at /scratch/project/<project-id>, no backup
- Large (~20 TiB), very fast (1 TiB/s)
- Use for reading job inputs and writing job results
- Copy results to HOME or PROJECT after the job ends
- Files are deleted after 90 days of inactivity!

Ondřej Meca, IT4Innovations

The Martian movie

Ondřej Meca, IT4Innovations

Command line interface Connect via ssh protocol

SSH server on Karolina SSH client on your computer Connect from your computer to Karolina Like remote desktop, but command-line interface only

ssh – connect and do work scp – copy files between Karolina and your computer

Ondřej Meca, IT4Innovations

- SSH keys for authentication
- Private-public key pair
- Password auth. is disabled on Karolina
- Examine the .ssh directory
- /home/<username>/.ssh
- C:/Users/<username>/.ssh
- Create the directory if it does not exist
- Are there id_rsa and id_rsa.pub files?
- This is the private and public key
- No there aren't / Yes there are, but I want to generate new keys
- Open command line / terminal / powershell
- Run ssh-keygen
- Follow the instructions

- 1. Upload your public ssh key
- 2. <u>https://extranet.it4i.cz/ssp</u>
- 3. Choose SSH Key option in the top menu
- 4. Use the login and password you received
- 5. Paste the contents of your public ssh key
 - ~/.ssh/id_rsa.pub

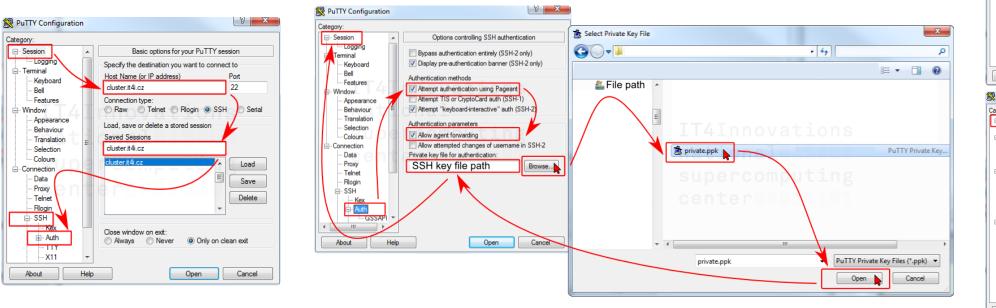
VSB TECHNI UNIVER OF OSTE	
Change your SSH Key Service is not intended for e-INFRA CZ users! Use	e-INFRA CZ user profile instead.
Enter your password and new public SSH key	After action, please, wait a moment (~5min) for the public key to be propagated to all clusters.
Login	Login
Login Password	Login Password
Password	Password Public SSH Key
Password	Password
Password	Password Public SSH Key
Password	Password Public SSH Key

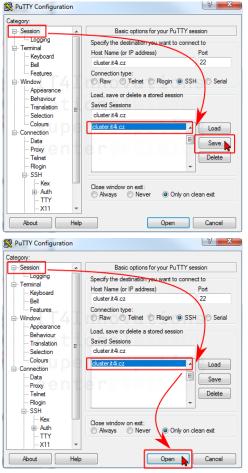
Ondřej Meca, IT4Innovations

Connect using command line

- ssh -i ~/.ssh/id_rsa username@karolina.it4i.cz
- All Linux systems (incl. MacOS)
- Newer Windows versions
- Copy files using command line
- scp -i ~/.ssh/id_rsa path/to/local/file username@karolina.it4i.cz:path/on/karolina

PuTTY, WinSCP


- SSH and SCP clients for Windows
- <u>https://docs.it4i.cz/general/accessing-the-clusters/shell-access-and-data-transfer/putty/</u>


Ondřej Meca, IT4Innovations

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

PuTTY, WinSCP

- SSH and SCP clients for Windows
- <u>https://docs.it4i.cz/general/accessing-the-clusters/shell-access-and-data-transfer/putty/</u>
- Use PuTTyGen to generate *.ppk from RSA key

Modules

Ondřej Meca, IT4Innovations

Each IT4I cluster has its own set of pre-installed modules available for immediate use

Module

- Is a set of binaries, libraries, header files, ...
- Has a set of modules that it depends on
- Might have several available versions (Python/2.7.9 vs Python/3.6.1)
- Might have a specific toolchain (GCC vs Intel toolchain)

To use a module, you must load it

- Loading a module modifies environment variables (PATH, LD_LIBRARY_PATH)
- This enables executing module binaries and linking to module libraries

Lmod is used to load modules

You can also create your own modules or ask support to install new modules for you

• Modules are defined using EasyBuild

If you find a module that is not working, contact support

Modules

Ondřej Meca, IT4Innovations

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

Useful hints

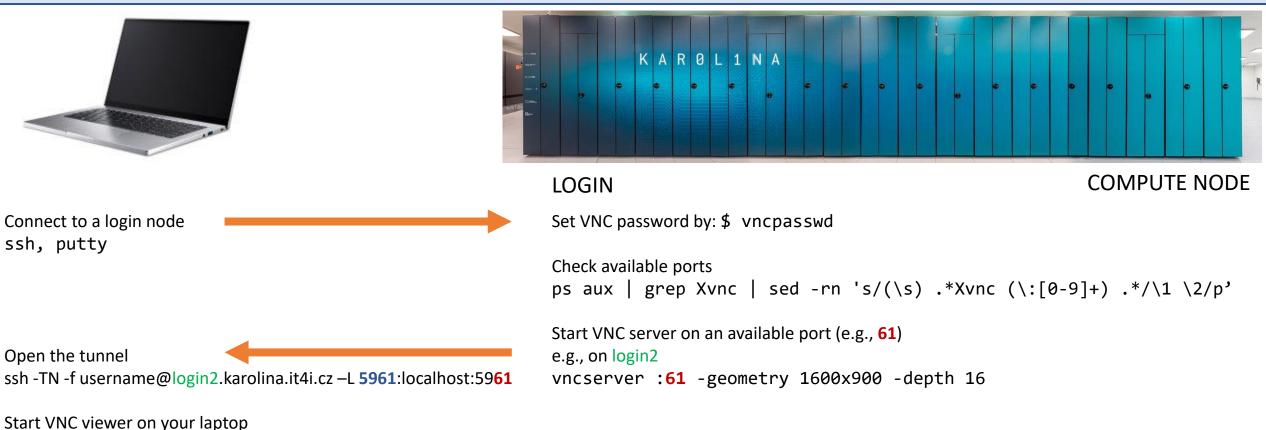
- Always load specific versions of modules to avoid surprises
 - ml GCC/6.3.0 (OK)
 - ml GCC (avoid loading of default module)
- Module load order matters (because of conflicting dependencies)
 - ml A B might produce different results than ml B A
- Filtering modules
 - \$ ml spider <package>
 - ml command also provides tab completion
- ml command is case sensitive
- Match module toolchains (GCC vs Intel)
- Do not forget to load correct modules in your PBS job script!

show available modules \$ ml av

load a module with its dependencies
\$ module load Python/3.6.8

list loaded modules

\$ module list Currently loaded modules: 1) GCC/6.3.0 2) Python/3.6.8 \$ python --version Python 3.6.8


unload all loaded modules
\$ ml purge
\$ python --version
Python 2.7.5

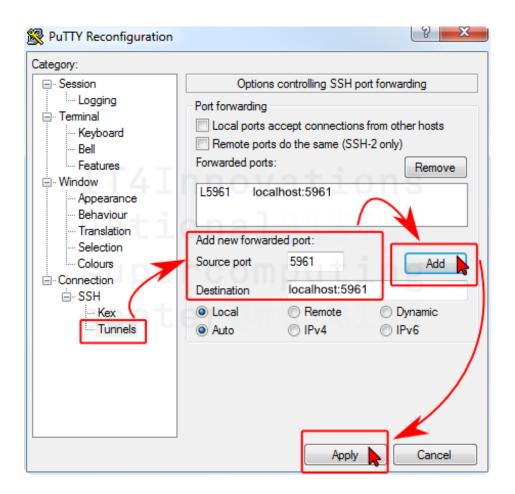
GUI applications

e.g., TigerVNC: localhost:5961

Ondřej Meca, IT4Innovations

<u>https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/vnc/</u>

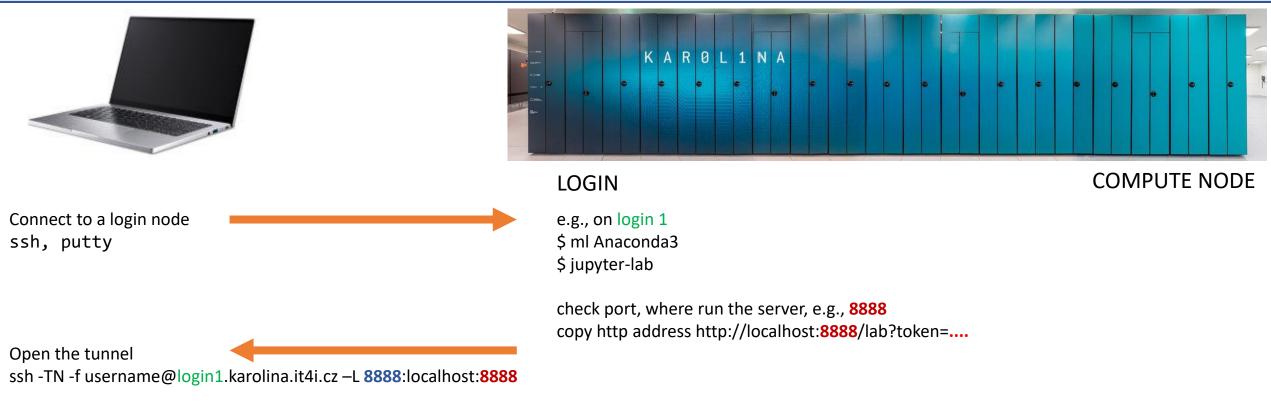
GUI applications


Ondřej Meca, IT4Innovations

Sctrain SUPERCOMPUTING KNOWLEDGE PARTNERSHIP

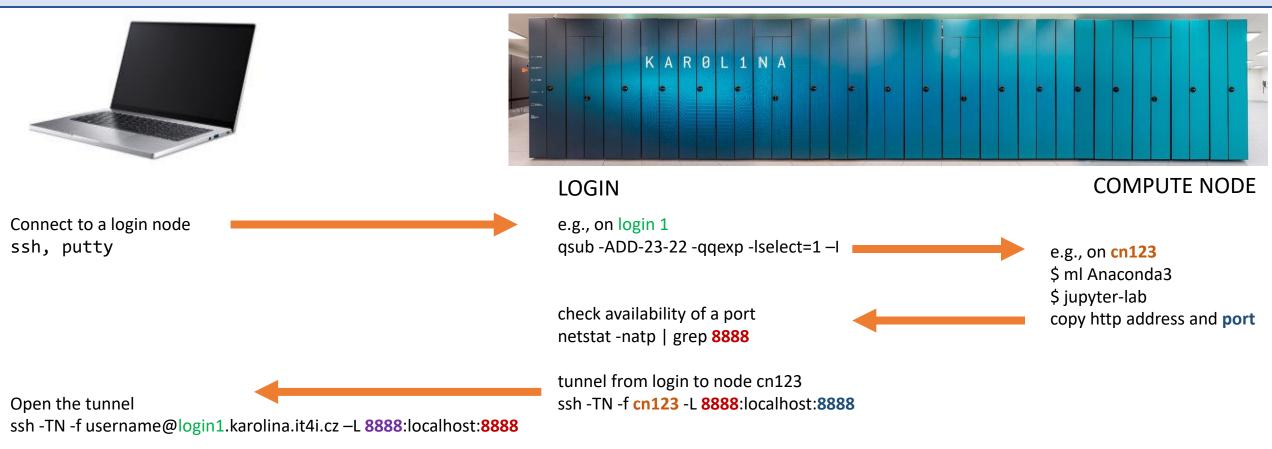
PuTTY, WinSCP

- Use PuTTy to create the tunnel
- add port forwarding to previously created connection


VNC Viewer: Connection Details
VNC server: 127.0.0.1:5961
Options Load Save As
About Cancel Connect <

Jupyter-lab

Ondřej Meca, IT4Innovations



Start Jupyter-lab in the browser: http://localhost:**8888**/lab?token=....

Jupyter-lab

Ondřej Meca, IT4Innovations

http://localhost:8888/lab?token=....