
This project has been funded with support from the European Commission.
This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which
may be made of the information contained therein.

Parallel computing
MPI, OpenMP, using GPU

Claudia Blaas-Schenner
VSC Research Center, TU Wien 06/2023

2

HPC solves societal challenges

source:
www.prace-ri.eu

The days when scientists did not have to care about the hardware are over,
and so are the days when compute centers did not have to worry about the scientific application!

remarkable repeated success stories:

• recurring core part of Nobel Prizes in Physics & Chemistry
• saving billions with better weather forecasting
• improving human health with genomics, personalized medicine
• 3-4% better fuel efficiency of aircraft & wind turbines every year
• disrupting communication, transportation and manufacturing
• design of future materials from scratch based on desired properties
• batteries & supercapacitors
• artificial intelligence, machine learning, sensors, open data

3

computing ßà science

4

parallel computing

socket
UMA (uniform memory access)

SMP (symmetric multi-processing)

node
ccNUMA (cache-coherent non-uniform ...)

first touch, pinning!

cluster
NUMA (non-uniform memory access)

fast access to own memory only

OpenMP: shared memory (socket, node)

MPI: distributed memory (socket, node, cluster)

CUDA: accelerated nodes

5

Amdahl’s law

1

10

100

1000

1 10 100 1000
p = #processors

S
pe

ed
up

 S
p

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
p = #processors

S
pe

ed
up

 S
p

Tparallel, p = f · Tserial + (1-f) · Tserial / p f ... sequential part of code neglecting time for communication

Sp = Tserial / Tparallel, p = 1 / (f + (1-f) / p) Speedup is limited: Sp < 1 / f neglecting load imbalance

Figures courtesy of
Rolf Rabenseifner.

Speedup = ratio – no absolute performance !

6

scalability vs. performance

Figures courtesy of
Georg Hager.

3D Stencil Update (“Jacobi”): y(i,j,k) = b*(x(i-1,j,k) + x(i+1,j,k) + x(i,j-1,k)
+ x(i,j+1,k) + x(i,j,k-1) + x(i,j,k+1))

7

pinning ?

no pinning

pinning
(physical cores first,

first socket first)

Benchmark & plots
courtesy of

Georg Hager.

OpenMP
STREAM benchmark

why should we care
about pinning ?

• eliminating
performance variations

• making use of
architectural features

• avoiding
resource contentionMPI will give the very same picture !

8

HPC = computation – communication – I/O

è Avoiding slow data paths is the key to most performance optimizations!

LATENCY ß typical values à BANDWIDTH

1–2 ns L1 cache 100 GB/s

3–10 ns L2/L3 cache 50 GB/s

100 ns memory 10 GB/s

1–10 µs HPC networks 1–8 GB/s

50 µs Gigabit Ethernet 100 MB/s

500 µs Solid state disk 100 MB/s

10 ms Local hard disk 50 MB/s

50 ms Internet 10 MB/s

computation exclusive
node / core

communication exclusive
message passing (BF) .

I/O shared .
parallel FS with all users

é
ê

Understand
HW features!

Know
your code!

à Take
control!

Know the sys.
environment!

HPC

OpenMP

9

standard - defined for C/C++ and Fortran

OpenMP 5.2 Specifications (PDF) and Reference Guides (PDF)

http://www.openmp.org/specifications/

10

OpenMP

socket
UMA (uniform memory access)

SMP (symmetric multi-processing)

node
ccNUMA (cache-coherent non-uniform ...)

first touch, pinning!

OpenMP: shared memory (socket, node)
Several sockets with multi-processors (node)
• memory is shared among all CPUs
• single / global address space
• uniform / non-uniform memory access

OpenMP works only on shared memory!
• socket - UMA
• node - ccNUMA

• the easiest way to parallelize your code
• requires a shared memory system (allows to exploit node level parallelism)
• portable across shared memory architectures (standard since 1997)
• extension to C/C++ and Fortran

(using directives, environment variables, and some library routines)

• focuses mostly on parallelizing loops with independent iterations
(less and less true with each version)

philosophy of OpenMP
àparallelization with as little modification to the sequential program as possible
àincremental approach to parallelization

11

OpenMP

• thread is a set of sequential instructions that are executed in order
• thread is a software construct - core is a hardware construct

à often each thread in a program is mapped to a single core

• shared memory model assumes that all threads read and write from the same memory

• distributed memory model means that no shared memory is available
(in this case communication has to be done by sending messages)

12

OpenMP - nomenclature

To start with OpenMP is easy

#pragma omp parallel for
for (i = 0; i < n; i++)
{

out[i] = in [i];
}

Divides the loop iterations into pieces
that are then executed in parallel by different threads.

à it must be possible to
determine the number of iterations
at the time the loop starts execution

13

OpenMP - simple example

fork-join model

• program begins as a single process
(master thread)

• at the beginning of a parallel region
a team of threads is created

• at the end of a parallel region
threads synchronize (implied barrier)

• at the end of a parallel region
execution continues sequentially

14

OpenMP - execution model

• OpenMP directive format

 #pragma omp directive_name [clause, [[,] clause] ...]

• a parallel region creates a team of threads that
(potentially) execute the workload

 #pragma omp parallel
{

printf("Hello World!\n";
}

à code is executed redundantly

15

OpenMP - directives & parallel region

• the header file omp.h provides library functions
• omp_get_num_threads() à returns the number of threads in the current team
• omp_get_thread_num() à returns the thread id (0 to omp_get_num_threads()-1)

 #pragma omp parallel
{

if (omp_get_thread_num() == 0)

printf(" Number of threads: %1d \n”, omp_get_num_threads();

 printf(" Hello world from thread %1d \n”, omp_get_thread_num();
}

16

OpenMP - library functions

• prints

Number of threads: 3
Hello world from thread 2
Hello world from thread 0
Hello world from thread 1

• compile
cc -fopenmp program.c

• run
./a.out

• there is no guarantee in which order the threads are executed

• if a specific order is desired this has to be enforced (might be very expensive)

• the thread id can be used to divide the work among threads (a lot of boilerplate)

OpenMP provides facilities to
automatically divide the work among the threads in a team

à the corresponding directives are called worksharing directives (e.g., for)

à reduction, combining multiple values into a single one, is a common pattern

17

OpenMP - execution model

• the number of threads used by OpenMP can be set
by using environment variables
set number of threads for the entire session
export OMP_NUM_THREADS=4; ./program
or only for one execution of the program
OMP_NUM_THREADS=4 ./program

• the default, often the number of hyperthreads in the system,
is usually not an optimal choice

à rule of thumb: number of threads = number of cores

18

OpenMP - number of threads

• shared memory model: all threads can write and read from main memory
• there are two types of variables
à shared variables are common to all threads (usually arrays, global variables, ...)
à private variables are duplicated on each thread (local variables, loop counters, ...)

• by default all variables are shared
• exceptions
à local variables defined inside an OpenMP directive
à loop control variables for a parallel for loop
à variables that are declared in a called function

• a variable can be explicitly declared as private or shared

19

OpenMP - data environment

• OpenMP is easy to write, but it is also easy to get wrong.
• OpenMP delegates a lot of responsibility to the programmer.

• ensure that the code can be parallelized
à make sure that the loop iterations are independent

• NO race conditions! - a program with a race condition is always wrong...
a race condition occurs when multiple threads are allowed to access the
same memory location and at least one access is a write

20

OpenMP - a word of warning

#include <time.h>

#include <stdio.h>

#include <math.h>

int main(int argc, char *argv[])

{

int num_threads, i, n = 10000000;

double pi, sum, h, x;

double time, time_s, time_e;

double PI25DT = 3.141592653589793238462643;

num_threads = 1;

h = 1.0 / (double)n;

sum = 0.0;

21

time_s = clock();

for (i = 0; i < n; i++)

{

x = h * ((double)i + 0.5);

sum += 4.0 / (1.0 + x*x);

}

pi = h * sum;

time_e = clock();

printf("serial, time, pi, error: %1d, %.3f, %.16f, %.16f\n",
num_threads, ((time_e-time_s)/1e3), pi, fabs(pi-PI25DT));

}

example - pi serial

#include <omp.h>

#include <stdio.h>

#include <math.h>

int main(int argc, char *argv[])

{

int num_threads, i, n = 10000000;

double pi, sum, h, x;

double time, time_s, time_e;

double PI25DT = 3.141592653589793238462643;

#pragma omp parallel

{

#pragma omp single

num_threads = omp_get_num_threads();

}

h = 1.0 / (double)n;

sum = 0.0;
22

time_s = omp_get_wtime();

#pragma omp parallel for private(x) shared(h) reduction(+:sum)

for (i = 0; i < n; i++)

{

x = h * ((double)i + 0.5);

sum += 4.0 / (1.0 + x*x);

}

pi = h * sum;

time_e = omp_get_wtime();

printf ("num_threads, time, pi, error: %02d, %.3f, %.16f, %.16f\n",
num_threads, ((time_e-time_s)*1e3), pi, fabs(pi-PI25DT));

}

example - pi OpenMP

• cd PI
• ml OpenMPI/4.1.1-GCC-10.2.0-Java-1.8.0_221
• vi pi_openmp.c
• cc -fopenmp -o pi_openmp pi_openmp.c

• OMP_NUM_THREADS=1 ./pi_openmp à 1,2,4,8,16,32

num_threads, time, pi, error: 01, 34.713, 3.1415926535897309, 0.0000000000000622

num_threads, time, pi, error: 02, 18.123, 3.1415926535899228, 0.0000000000001297

num_threads, time, pi, error: 04, 8.933, 3.1415926535896697, 0.0000000000001235

num_threads, time, pi, error: 08, 4.363, 3.1415926535898038, 0.0000000000000107

num_threads, time, pi, error: 16, 2.618, 3.1415926535898024, 0.0000000000000093

num_threads, time, pi, error: 32, 1.352, 3.1415926535898024, 0.0000000000000093

23

results - pi OpenMP

MPI

24

standard - defined for C/C++ and Fortran

MPI: A Message-Passing Interface Standard Version 4.0 (PDF))
python (not part of the MPI standard): https://mpi4py.readthedocs.io/

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
http://www.openmp.org/specifications/
https://mpi4py.readthedocs.io/

25

MPI

cluster
NUMA (non-uniform memory access)

fast access to own memory only

MPI: distributed memory (socket, node, cluster)
Several sockets with multi-processors (node)
• memory is shared among all CPUs
• single / global address space
• uniform / non-uniform memory access

socket
UMA (uniform memory access)

SMP (symmetric multi-processing)

node
ccNUMA (cache-coherent non-uniform ...)

first touch, pinning!

MPI works everywhere!
Multi-computers with various architectures (cluster)
• set of nodes interconnected by a network
• each node has separated memory
• slower access to memories of other processors

26

MPI basics

• overview, process model and language bindings
- one program on several processors
- work and data distribution
- starting several MPI processes

• messages and point-to-point communication
- the MPI processes can communicate

• nonblocking communication
- to avoid idle times, serializations, and deadlocks

• collective communication
- e.g. broadcast, reduction, …

27

overview, process model...

• overview, process model and language bindings
- one program on several processors
- work and data distribution
- starting several MPI processes

• messages and point-to-point communication
- the MPI processes can communicate

• nonblocking communication
- to avoid idle times, serializations, and deadlocks

• collective communication
- e.g. broadcast, reduction, …

28

each processor in a message passing program runs a sub-program
• written in a conventional sequential language, e.g., C, Fortran, or python
• typically the same on each processor (SPMD), all variables are private
• communicate via special send & receive routines (message passing)

message passing programming paradigm

data

sub-
program

communication network

29

• the system of size processes is started by special MPI initialization program
• the value of myrank is returned by special library routine
• all distribution decisions are based on myrank

data & work distribution

myrank=0 myrank=1 myrank=2 myrank=
(size-1)

30

• must be linked with an MPI library à mpicc

• must be started with the MPI startup toolà mpirun –n # ./a.out

• MPI function format à MPI_Xxxxxx(parameter,...);

MPI process model

#include <mpi.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
MPI_Init(&argc, &argv);
...
MPI_Finalize();
}

31

• all processes (= sub-programs) of one MPI program are combined in the
communicator MPI_COMM_WORLD (predefined handle)

• size is the number of processes in a communicator
• each process has its own rank in a communicator

starting with 0 – ending with (size-1)

communicator MPI_COMM_WORLD

0 1
5

2

4 3
6

MPI_COMM_WORLD

32

#include <mpi.h>
#include <stdio.h>
int main(int argc, char *argv[])
{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (my_rank == 0)
{

printf ("Hello world!\n");
}
printf("I am process %i out of %i\n", rank, size);

MPI_Finalize();
}

example: Hello world!

I am 2 of 4
Hello world
I am 0 of 4
I am 3 of 4
I am 1 of 4

33

point-to-point communication
• overview, process model and language bindings

- one program on several processors
- work and data distribution
- starting several MPI processes

• messages and point-to-point communication
- the MPI processes can communicate

• nonblocking communication
- to avoid idle times, serializations, and deadlocks

• collective communication

- e.g. broadcast, reduction, …

34

• messages are packets of data moving between MPI processes
• necessary information for the message passing system:

– sending process – receiving process i.e., the ranks
– source location – destination location
– source data type – destination data type
– source data size – destination buffer size

point-to-point communication

data

sub-
program

communication network

35

• communication between two processes
• source process sends message to destination process
• communication takes place within a communicator, e.g., MPI_COMM_WORLD
• processes are identified by their ranks in the communicator

point-to-point communication

0 1
5

2

4 3

6

communicator

source
destination

message

36

start = MPI_Wtime();

for (i = 1; i <= 50; i++)
{

if (my_rank == 0)
{

MPI_Send(buffer, 1, MPI_FLOAT, 1, 17, MPI_COMM_WORLD);
MPI_Recv(buffer, 1, MPI_FLOAT, 1, 23, MPI_COMM_WORLD, &status);

}
else if (my_rank == 1)
{

MPI_Recv(buffer, 1, MPI_FLOAT, 0, 17, MPI_COMM_WORLD, &status);
MPI_Send(buffer, 1, MPI_FLOAT, 0, 23, MPI_COMM_WORLD);

}
}

finish = MPI_Wtime();

if (my_rank == 0)
printf("Time for one messsage: %f micro seconds.\n",

finish - start) / (2 * 50) * 1e6);

example: ping pong

ping

pong

P0 P1

tim
e

37

nonblocking communication
• overview, process model and language bindings

- one program on several processors
- work and data distribution
- starting several MPI processes

• messages and point-to-point communication
- the MPI processes can communicate

• nonblocking communication
- to avoid idle times, serializations, and deadlocks

• collective communication

- e.g. broadcast, reduction, …

38

nonblocking communication

à to avoid idle times, serializations and deadlocks
à halo communication

cyclic boundary conditions:

non-cyclic boundary:

Data calculated by
one MPI process

Halo data

39

non-cyclic boundary:

if (myrank < size-1)
MPI_Send(…, right, …);

if (myrank > 0)
MPI_Recv(…, left, …);

blocking à risk deadlocks & serializations

cyclic boundary:

MPI_Send(…, right, …)
MPI_Recv(…, left, …)

MPI_Send

MPI_Send

MPI_Recv

deadlock

serialization

if the MPI library chooses the synchronous protocol

timelines of all processes

40

cyclic communication à other bad ideas

serialization

if the MPI library chooses the synchronous protocol

timelines of all processesif (myrank < size-1) {
MPI_Send(…, right, …);
MPI_Recv(…, left, …);

} else {
MPI_Recv(…, left, …);
MPI_Send(…, right, …);

}

MPI_Send

idle à à à à à à à real send
MPI_Recv

real send

idle à à à real send

idle à à à à à à à real send

if (myrank%2 == 0) {
MPI_Send(…, right, …);
MPI_Recv(…, left, …);

} else {
MPI_Recv(…, left, …);
MPI_Send(…, right, …);

}

MPI_Send MPI_Recv

idle à à à real send

idle à à à real send

41

nonblocking communication

separate communication into three phases:

• initiate nonblocking communication

- routine name starting with MPI_I…

- incomplete

- local, returns immediately,
returns independently of any other process’ activity

à do some work (perhaps involving other communications?)

• wait for nonblocking communication to complete

- the send buffer is read out, or

- the receive buffer is filled in

0

MPI_Isend(...)

doing some other work

MPI_Wait(...)

the definition of nonblocking
is clarified in

MPI-4.0
reading: MPI-4.0/2.4 & MPI-4.0/3.7

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf%23page=53
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf%23page=100

42

nonblocking send

0
1

5

2

4

3

6

• Initiate nonblocking send
in the ring example: Initiate nonblocking send to the right neighbor

• Do some work:
in the ring example: Receiving the message from left neighbor

• Now, the message transfer can be completed
• Wait for nonblocking send to complete

43

nonblocking timelines

MPI_Isend MPI_Recv MPI_Wait

MPI_Irecv MPI_Send MPI_Wait

MPI_Isend provides
the message …

… that is then communicated
and received during MPI_Recv

MPI_Wait would really wait, if for the
local MPI_Isend, the MPI_Recv in the

corresponding process is not yet
finished

MPI_Irecv sets up
the receive-buffer … MPI_Send sends

the message …
… and may already receive the

message from the other process

… or it will be received
latest in the MPI_Wait

no serialization
no deadlock

44

use cases for nonblocking comm.

à to avoid idle times, serializations and deadlocks
(as if overlapping of communication with other communication)

à real overlapping of
• several communications
• communication and computation

à other MPI features: Send-Receive in one routine
• MPI_Sendrecv & MPI_Sendrecv_replace (blocking à prevent serializations & deadlocks)
• combines the triple “MPI_Irecv + Send + Wait” into one routine
• MPI_Isendrecv & MPI_Isendrecv_replace (nonblocking à minimize idle times) ß new MPI 4.0

45

example: ring
int snd_buf, rcv_buf;
int right, left;
int sum, rank, size, i;
MPI_Status status;
MPI_Request request;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

right = (rank+1) % size;
left = (rank-1+size) % size;
sum = 0;
snd_buf = rank;
for(i = 0; i < size; i++)
{
MPI_Issend(&snd_buf, 1, MPI_INT, right, 17, MPI_COMM_WORLD, &request);
MPI_Recv (&rcv_buf, 1, MPI_INT, left, 17, MPI_COMM_WORLD, &status);
MPI_Wait(&request, &status);
snd_buf = rcv_buf;
sum += rcv_buf;

}
printf ("PE%i:\tSum = %i\n", my_rank, sum);
MPI_Finalize();

Synchronous send (Issend) instead of standard
send (Isend) is used only to demonstrate the use
of the nonblocking routine resolves the deadlock
(or serialization) problem.
A real application would use standard Isend().

46

collective communication
• overview, process model and language bindings

- one program on several processors
- work and data distribution
- starting several MPI processes

• messages and point-to-point communication
- the MPI processes can communicate

• non-blocking communication
- to avoid idle times, serializations, and deadlocks

• collective communication
- e.g. broadcast, reduction, …

• all processes in a communicator processes are involved
• can be built out of point-to-point communications, but …
• allow optimized internal implementations (by MPI libraries)
• examples:

• broadcast, scatter, gather
• reduction operations (global sum, maximum, etc.)
• barrier synchronization (do NOT use in production code!)
• neighbor communication in a virtual process grid

47

collective communication

Should be faster than
any programming
with point-to-point
messages!

You need not to care about it !
It is the job of the MPI library !!!

Tree based algorithm
O(log2(# processes))

1

2

2 3

33 3
Sequential algorithm

O(# processes)

#include <time.h>

#include <stdio.h>

#include <math.h>

int main(int argc, char *argv[])

{

int num_threads, i, n = 10000000;

double pi, sum, h, x;

double time, time_s, time_e;

double PI25DT = 3.141592653589793238462643;

num_threads = 1;

h = 1.0 / (double)n;

sum = 0.0;

48

time_s = clock();

for (i = 0; i < n; i++)

{

x = h * ((double)i + 0.5);

sum += 4.0 / (1.0 + x*x);

}

pi = h * sum;

time_e = clock();

printf("serial, time, pi, error: %1d, %.3f, %.16f, %.16f\n",
num_threads, ((time_e-time_s)/1e3), pi, fabs(pi-PI25DT));

}

example - pi serial

#include <mpi.h >

#include <stdio.h>

#include <math.h>

int main(int argc, char *argv[])

{

int rank, size, i, n = 10000000;

double mypi, pi, sum, h, x;

double time, time_s, time_e;

double PI25DT = 3.141592653589793238462643;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

h = 1.0 / (double)n;

sum = 0.0;

49

time_s = MPI_Wtime ();

for (i = rank; i < n; i += size)

{

x = h * ((double)i + 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

time_e = MPI_Wtime ();

if (rank == 0)

printf ("size, time, pi, error: %02d, %.3f, %.16f, %.16f\n",
size, ((time_e-time_s)*1e3), pi, fabs(pi-PI25DT));

example - pi MPI

MPI_Finalize();
}

• cd PI
• ml OpenMPI/4.1.1-GCC-10.2.0-Java-1.8.0_221
• vi pi_mpi.c
• mpicc -o pi_mpi pi_mpi.c

• mpirun -n 1 ./pi_mpi à 1,2,4,8,16,32

size, time, pi, error: 01, 35.339, 3.1415926535897309, 0.0000000000000622

size, time, pi, error: 02, 17.625, 3.1415926535899850, 0.0000000000001918

size, time, pi, error: 04, 9.157, 3.1415926535896861, 0.0000000000001070

size, time, pi, error: 08, 4.955, 3.1415926535898069, 0.0000000000000138

size, time, pi, error: 16, 2.451, 3.1415926535897931, 0.0000000000000000

size, time, pi, error: 32, 2.789, 3.1415926535897847, 0.0000000000000084

50

results - pi MPI

GPU

51

no standard

different options
ISO standard parallelism

OpenACC

OpenMP

CUDA

• GPU & GPU are fundamentally different

• CPU is a latency reducing architecture - optimized for serial tasks
+ very large main memory
+ very fast clock speed
+ latency optimized via large caches
+ small number of threads can run very quickly
- relatively low memory bandwiths
- cache missed very costly
- low performance / watt

52

CPU & GPU

• GPU & GPU are fundamentally different

• GPU is all about hiding latency - optimized for parallel tasks
+ high-bandwidths main memory
+ significantly more compute resources
+ latency tolerant via parallelism
+ high throughput
+ high performance / watt
- relatively low memory capacity
- low per-thread performance

53

CPU & GPU

Thank you for your attention!

http://sctrain.eu/

This project has been funded with support from the European Commission.
This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which
may be made of the information contained therein.

http://sctrain.eu/

