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A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E.

Tom Mitchell, 1997

Example: chess playing

T = playing chess

E = playing games of checkers

P = probability to win next game

MACHINE LEARNING =LEARNING BY PLAYING
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ML in daily life :
‘ Domitilla Brandoni, CINECA S Ctra | n

SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

e Spam filters

* Face recognition, pattern recognition, speech recognition (Apple's FacelD, Android's Face Unlock, surveillance,
medical images)

* Self-customized programs (e.g. Netflix)

* Predictive maintenance

* ChatGPT

* Language translation (deepl, quillbot)

e Agriculture

e Cybersecurity
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Can machine think? :
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The concepts of 'learning algorithms', "artificial intelligence' can be misleading but ...

The aim is not creating machine that are able to think, the aim is creating machine that can
act indistinguishably from a thinker in a SPECIFIC situation, for a SPECIFIC task
(Alan Turing, Stevan Robert Harnad )




SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Types of machine learning SCtrain
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Supervised learning Unsupervised learning Reinforcement learning

Semi-supervised learning Self-supervised learning
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Supervised learning
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Machine learning problem where all the data are labelled
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Machine learning problem where all the data are NOT labelled
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Machine learning problem where some of the data are labelled and some of the data are NOT labelled

Small portion of data First Classifier
with human-made (base model)
labels

2. Lots of unlabeled data First Classifier trained
on labeled data

Original labeled data
Improved Classifier 4
3. New dataset trained on new Predictions

Most confident pseudo- | dataset
labels

Pseudo-labels

0 altexsoft

Semi-supervised self-training method
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Reinforcement learning SCtraiﬂ
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Machine learning problem focused on interaction between agent and environment

environment

actions

S
P
P
&
!
\
¢
é 4 s

rewards
—
a : observations 4 A

agent

10



SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

Self-supervised learning SCtrain
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No labels, supervised tasks

Dataset

3 Tasks (e.g., Cla.ssification,
Regression)

https://towardsdatascience.com/supervised-semi-supervised-unsupervised-and-self-supervised-learning-7fa79aa9247c
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Learning by minimizing :
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REGRESSION ERRORS CLASSIFICATION ERRORS

e Precision

e Mean Squared Error
* Mean Average Error
* R-squared

* Accuracy
* Recall
* F1

12
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TPTN,FPFN SC :
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Predicted condition

Total
population Positive (PP) Negative (PN)
=P+ N

False negative

g Positive (P) True positive (TP), (FN),

= hit type Il error, miss,
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S
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< Negative (N) type | error, false alarm, (TN),
overestimation correct rejection

Wikipedia
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Hands-on S C :
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supervised_unsupervised.ipynb

15
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ANN vs HNN SC :
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Try to mimic HNN in ANN by using simmetries specific to certain areas of the human
brain (LGN, V1) within ANNs
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CNN filters, Federico Bertoni,Noemi Montobbio, Alessandro Sarti e Giovanna Citti*

*Emergence of Lie symmetries in functional architectures learned by CNNs Federico Bertoni,Noemi Montobbio, Alessandro Sarti e Giovanna Citti 16
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Architecture of a neuron :
SCtrain
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b

@ ‘ Activation function

W_2

Inputs (x_i)
Weights (w_i)
Bias (b)
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Architecture of a Neural Network :
SCtrain
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Activation functions :
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Tanh RelU
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No activation, no DL
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Many layers without activation
function

one layer with many weights
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Many layers with activation
function

Deep Learning




Why NN?
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A neural network with a single hidden layer and a non linear activation function is

a “Universal Function Approximator”

The universal approximation theorem states that a feed-forward network with @
single hidden layer containing a finite number of neurons can approximate any
continuous functions on a compact subsets of R (under mild assumptions on the
activation function)

A feed-forward network is a powerful deep learning tool as a universal function
approximator able to model any complex function

Input Output
layer layer

Input #1 — \“}\ e

—=@
o w2 —
Input #2 — B /!

e W
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» Output
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DL workflow
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Model
selection

Error
function

MSE — izt

MAE = 2im Ui =G|

n

Optimization
algorithm

lteration on
data
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Convolutional Neural Networks
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* Convolution layer : convolutions of data (an
application of a spatial filters) which extract
specific features (one per filter)

* Pooling layer: downsamples the feature map to
introduce Translation invariance and reduce
parameters (i.e. overfitting)

» Last layer: feature identifier/classifier

___Typical Convolutional Layer

dabcledii
“mm QE’ Laver3
Uahen N

Layer 2

/I’\.l \—/' // Layer 1
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Convolutional Neural Networks SC :
train

Domitilla Brandoni, CINECA

Credits: towardsdatascience 24



SUPERCOMPUTING
KNOWLEDGE
PARTNERSHIP

GAN S C :
Domitilla Brandoni, CINECA tra | n

Le Generative Adversarial Network (GAN) sono costituite da due reti neurali: generatore e discriminatore

< )

Learns to generate data similar to training data.
The generated instances become negative training
examples for the discriminator

-

GAN learns by minimizing/maximizing a specific objective function
Optima: generator mimics well the input and the discriminator
outputs 0.5 deterministically on all inputs

GENERATOR DISCRIMINATOR

Learns to distinguish the real data (training data)
from the fake data (generator's data)

25



Autoencoders
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SCtrain

ENCODER

DECODER

- s s s s s

Minimize the difference between the
input and the reconstruction

b: X — F
Vv F — X

¢, = argmin || X — (¢ 0 ¢) X
R
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DL workflow
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Model
selection

Error
function

MSE — izt

MAE = 2im Ui =G|

n

Optimization
algorithm

lteration on
data
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Backpropagation :
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Cost function

A
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https://www.3bluelbrown.com/lessons/backpropagation-calculus
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Backpropagation :
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Backpropagation
calculus

29
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GD SGD

Gradient descent on all data :
Gradient descent on randomly selected data

Slow
Minimizing on all data

Higher probability to approximate better the
local minima

Faster
Minimizing on some data
Lower probability to approximate the local minima

BATCH GD
Gradient on a batch of data

batch size: hyperparameter of the model
(High bs ~ GD)

30
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E h :
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Epoch : when the ENTIRE dataset is evaluated once from the network (backward and forward)
Steps per epochs: gradient descent steps per epoch (depends from the bs)

for i=0,....,epochs
for batch in batches
w = batch GD algorithm(w)

e Choose an initial vector of parameters w and learning rate n .
* Repeat until an approximate minimum is obtained:
e Fori=1,2,...,n,do:

e w:=w-nVC(w), where the gradient of the cost
function is computed on the batch samples. The way in
which the update is done is defined by the
optimization algorithm

31
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Hands-on S C :
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NeuralNetworks.ipynb

33
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Why should | care for HPC?
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Training performance: NVIDIA DGX-1 32GB (8x V100 32GB)

Throughput
speedup (FP32
to mixed
precision)

Throughput -

Throughput
S b mixed

- FP32

GPUs
precision

1 356 img/s 1156 img/s 3.24 x

8 2766 img/s 8056 img/s
Training performance: NVIDIA DGX A100 (8x A100 80GB)

2.91 x

Throughput
speedup (TF32
to mixed

Throughput -
Throughput

- TF32

GPUs mixed

precision o
precision)

938 img/s 2470 img/s 2.63 x

7248 img/s 16621 img/s 2.29 X

FP32
Strong
Scaling

1.0 x

7.75 X

TF32
Strong
Scaling

1.0x

7.72 %

Mixed
Precision
Strong
Scaling

1.0x

6.96 x

Mixed
Precision
Strong
Scaling

1.0 x

6.72 X

Mixed
Precision
Training
Time (90E)

~30 hours

~5 hours

Mixed
Precision
Training
Time (90E)

~14 hours

~3 hours
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FP32
Training
Time (90E)
~95 hours

~13 hours

TF32
Training
Time (90E)
~36 hours

~5 hours
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Parallel DL S C :
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(a) Data Parallelism

(b) Model Parallelism—layer-wise
https://doi.org/10.1145/3442442.3452055
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Explainability -
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INPUT

v

AIModel » OUTPUT

Al models are usually considered as a sort of black box. Thus, it is not easy
to understand how they decide -> lack of trust

37
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Exercise SCtram
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Same procedure of the hands-on session but with another dataset
 Download the dataset

* Look at the variables

* Create a neural network

* Train the model

* Test the model

38
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Thank you for your attention!

http://sctrain.eu/
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