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Definition of machine learning
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A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P if its performance at tasks in T, as 
measured by P, improves with experience E.
Tom Mitchell, 1997

Example: chess playing

T = playing chess
E = playing games of checkers
P = probability to win next game
MACHINE LEARNING =LEARNING BY PLAYING



ML, AI & DL
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ML in daily life
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• Spam filters
• Face recognition, pattern recognition, speech recognition (Apple's FaceID, Android's Face Unlock, surveillance, 

medical images)
• Self-customized programs (e.g. Netflix)
• Predictive maintenance
• ChatGPT
• Language translation (deepl, quillbot)
• Agriculture
• Cybersecurity



Can machine think?
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The concepts of 'learning algorithms', 'artificial intelligence' can be misleading but …

The aim is not creating machine that are able to think, the aim is creating machine that can 
act indistinguishably from a thinker in a SPECIFIC situation, for a SPECIFIC task
(Alan Turing, Stevan Robert Harnad )
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Types of machine learning

Supervised learning Unsupervised learning Reinforcement learning

Semi-supervised learning Self-supervised learning



Supervised learning
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Machine learning problem where all the data are labelled



Unsupervised learning
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Machine learning problem where all the data are NOT labelled

credits: Wikipedia



Semi-supervised learning
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Machine learning problem where some of the data are labelled and some of the data are NOT labelled



Reinforcement learning
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Machine learning problem focused on interaction between agent and environment



Self-supervised learning
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No labels, supervised tasks

https://towardsdatascience.com/supervised-semi-supervised-unsupervised-and-self-supervised-learning-7fa79aa9247c

https://towardsdatascience.com/supervised-semi-supervised-unsupervised-and-self-supervised-learning-7fa79aa9247c


Learning by minimizing
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REGRESSION ERRORS

• Mean Squared Error
• Mean Average Error

• R-squared

CLASSIFICATION ERRORS

• Precision
• Accuracy
• Recall
• F1



MSE
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TP,TN,FP,FN
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Wikipedia 



Hands-on
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supervised_unsupervised.ipynb



ANN vs HNN
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CNN filters, Federico Bertoni,Noemi Montobbio, Alessandro Sarti e Giovanna Citti*

*Emergence of Lie symmetries in functional architectures learned by CNNs Federico Bertoni,Noemi Montobbio, Alessandro Sarti e Giovanna Citti

Try to mimic HNN in ANN by using simmetries specific to certain areas of the human 
brain (LGN, V1) within ANNs



Architecture of a neuron
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Architecture of a Neural Network
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- Many layers (deep)
- Many nodes
- Activation functions
- input/output

INPUT 
LAYER

OUTPUT  
LAYER

HIDDEN  
LAYERS



Activation functions
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No activation, no DL
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Many layers without activation 
function

=
one layer with many weights

Many layers with activation 
function

=
Deep Learning



Why NN?
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A neural network with a single hidden layer and a non linear activation function is
a “Universal Function Approximator”
The universal approximation theorem states that a feed-forward network with a
single hidden layer containing a finite number of neurons can approximate any
continuous functions on a compact subsets of R (under mild assumptions on the
activation function)
A feed-forward network is a powerful deep learning tool as a universal function
approximator able to model any complex function



DL workflow
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Convolutional Neural Networks
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• Convolution layer : convolutions of data (an 
application of a spatial filters) which extract 
specific features (one per filter)

• Pooling layer: downsamples the feature map to 
introduce Translation invariance and reduce 
parameters (i.e. overfitting)

• Last layer: feature identifier/classifier



Convolutional Neural Networks
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Credits: towardsdatascience



GAN
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Le Generative Adversarial Network (GAN) sono costituite da due reti neurali: generatore e discriminatore

GENERATOR

Learns to generate data similar to training data. 
The generated instances become negative training 

examples for the discriminator

DISCRIMINATOR

Learns to distinguish the real data (training data) 
from the fake data (generator's data)

GAN learns by minimizing/maximizing a specific objective function
Optima: generator mimics well the input and the discriminator 
outputs 0.5 deterministically on all inputs



Autoencoders
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DL workflow
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Backpropagation
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Cost function

Credits: 3blue1brown

https://www.3blue1brown.com/lessons/backpropagation-calculus

https://www.3blue1brown.com/lessons/backpropagation-calculus


Backpropagation
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Credits: 3blue1brown



GD vs SGD? Batch GD
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GD

Gradient descent on all data

Slow

Minimizing on all data

Higher probability to approximate better the 
local minima

SGD

Gradient descent on randomly selected data

Faster

Minimizing on some data

Lower probability to approximate the local minima

BATCH GD

Gradient on a batch of data

batch size: hyperparameter of the model
(High bs ~ GD)



Epochs
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Epoch : when the ENTIRE dataset is evaluated once from the network (backward and forward)
Steps per epochs: gradient descent steps per epoch (depends from the bs)

for i=0,….,epochs
for batch in batches

w = batch_GD_algorithm(w)

• Choose an initial vector of parameters w and learning rate η .
• Repeat until an approximate minimum is obtained:

• For i = 1 , 2 , . . . , n , do:
• w := w − η ∇ C ( w ) , where the gradient of the cost 

function is computed on the batch samples. The way in 
which the update is done is defined by the 
optimization algorithm



Inference
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Credits: 3blue1brown



Hands-on
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NeuralNetworks.ipynb



Why should I care for HPC?
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Why should I care for HPC?
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Parallel DL
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https://doi.org/10.1145/3442442.3452055

https://doi.org/10.1145/3442442.3452055


Explainability
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OUTPUTAI ModelINPUT

AI models are usually considered as a sort of black box. Thus, it is not easy 
to understand how they decide -> lack of trust



Exercise
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Same procedure of the hands-on session but with another dataset
• Download the dataset
• Look at the variables
• Create a neural network
• Train the model
• Test the model



Thank you for your attention!

http://sctrain.eu/ 
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