
Python Concurrency
with Threads, Process, Multiprocessing and Futures

Leon Kos1

1Faculty of Mechanical Engineering
University of Ljubljana

HPC in Data Science: focus on Big Data and AI, June 2023

Kos (UL) Concurrency SCtrain 2023 1 / 11

Overview
Demonstration and hands-on login1.karolina.it4i.cz

Running a Jupyter notebook session
Demonstrating numpy aspects
Performing computations
SciPy

Examples for this session:

https://github.com/kosl/python-training/

Kos (UL) Concurrency SCtrain 2023 2 / 11

https://github.com/kosl/python-training/

Running a Jupyter notebook session on a LOGIN node

On your local Linux or MacOS machine
ssh it4i -username@login1.karolina.it4i.cz
Clone the tutorial
git clone https :// github.com/kosl/python -training.git
Load anaconda module on a compute node
module load Anaconda3
Run the Jupyter lab
jupyter -lab
...
Or copy and paste one of these URLs:

http :// localhost :8888/ lab?token =34 fa853873fd58aa58c675677b838a151ab62ca44b03f823

The port number after the localhost: differs according to the free port
availability. We need to forward this port to our localhost (laptop) through SSH
connection.

Note
Running long computation on a login node is not recommended but can be used
for the introductory part although running on a compute node is preferred.

Kos (UL) Concurrency SCtrain 2023 3 / 11

Port forwarding from the login node to the localhost

To establish the port forwarding tunnel from the compute node through the login
node to the local machine (laptop) press Enter while the lab process is running to
get a clear new line then press ˜ (tilda), then C, to get the ssh> prompt. Then
enter the port forwarding command

ssh > -L 8888: localhost :8888
Forwarding port.

Note
Port number differs by user. While typing SSH escape command ˜C, to get the
ssh> prompt, nothing is echoed!

Alternative method to establish a SSH tunnel is to run another terminal
connection from the localhost with above connection like

ssh -TN -L 8888: localhost :8888 \
-f it4i -username@login1.karolina.it4i.cz

Kos (UL) Concurrency SCtrain 2023 4 / 11

Running a Jupyter notebook session on a compute node

This method is preferred but can take a while for compute node to be allocated
for max 1 hour.

On your local Linux or MacOS machine
ssh it4i -username@login1.karolina.it4i.cz
Clone the tutorial
git clone https :// github.com/kosl/python -training.git
Acquire your own compute node for an hour
python -training/jupyter -lab.sh
...
Or copy and paste one of these URLs:

http :// localhost :8000/ lab?token=c659716f2c10612bb6bd65027a5504b5c9cbaa69893dbc25

The script establishes a new port forwarding tunnel from the compute node to the
the login node. User needs only to establish tunnel to local machine (laptop) as
described in the previous slide. Key sequence <Enter>˜C and then ssh> -L
8000:localhost:8000 in the above port forwarding example.

Kos (UL) Concurrency SCtrain 2023 5 / 11

Python

After port forwarding is established at our localhost we can open a connection
printed out together with token in any browser. For example

http :// localhost :8000/ lab?token=c659716f2c10612bb6bd65027a5504b5c9cbaa69893dbc25

and immediately the jupyter-lab appears where we select default kernel and first
example in file browser on the left, where we open and run step by step
˜/python-training/concurrency.ipynb

Kos (UL) Concurrency SCtrain 2023 6 / 11

Concurrency

Process vs thread for computing

Process
can run in parallel in Python.
Uses separate memory space (easy handling, harder communications - IPC)
Larger memory footprint (usually used in tens - hundreds)

Thread
can run only concurrently in Python (GIL) - no multicore
shared memory space (hard management, easy communication)
lightweight (can be used in hundreds - thousands), in linux 4MB base size

Note

Use of Global Interpreter Lock (GIL) in CPython contributed to widespread use of
the language due to its simplicity of implementing libraries with C API without
deadlocks.

Kos (UL) Concurrency SCtrain 2023 7 / 11

Threading

Threading

Use the Python threading module to create a multi-threaded application.
Use the Thread(function, args) to create a new thread.
Call the start() method of the Thread class to start the thread.
Call the join() method of the Thread class to wait for the thread to complete
in the main thread.
Global objects still need to be protected between threads.
Only use threading for I/O bound processing applications.

Note
If the task is doing intensive calculations then multi-threading will not make any
speed up.

Kos (UL) Concurrency SCtrain 2023 8 / 11

Multiprocessing

Multiprocessing

Multiprocessing module creates new processes (similar as MPI)
Each created Process() is a clone (fork, spawn) of the master including data
Function that is started is specified with arguments at creation of the process
Results can be returned to the master with simple return
Process creation is expensive system-dependent operation and the size of the
problem should be considered
Python objects can be exchanged through IPC mechanisms. Can be over
network.
Queues, Pipes and Arrays can be used for communication. Size matters!

Kos (UL) Concurrency SCtrain 2023 9 / 11

Futures

Futures
Doing concurent and parallel computation easier

Module concurrent.futures simplifies Thread or Process creation and
execution with executors
Interface simplicity brought to multi-threading and multi-processing with
similar functions that allows switching from threads to processes.
Executor can queue the task to max tasks specified.

Kos (UL) Concurrency SCtrain 2023 10 / 11

Examples

Hands-on session

Prepared Jupyter notebooks explain the basics needed for handling data in the
following sessions found under /̃python-training/concurrency directory:

multiprocessing Using (multi) process execution and IPC communication
threading I/O bound threads in Python

futures a higher level interface to push tasks to a background thread
without blocking execution of the calling thread, while still being
able to retrieve their results when needed

Kos (UL) Concurrency SCtrain 2023 11 / 11

	Python
	Concurrency
	Threading
	Multiprocessing
	Futures
	Examples

